Indian Institute of Space Science and Technology
Thiruvananthapuram

M.Tech. Aerodynamics and Flight Mechanics
Curriculum & Syllabus (Effective from 2017 Admission)

Department of Aerospace Engineering
Outcomes of the M.Tech. Programme

On completion of M.Tech. Aerodynamics and Flight Mechanics programme, it is expected that a student:

- Shall be able to create low fidelity aerodynamic models (using potential flow theory and boundary layer analysis) and use it to estimate forces and moments on the flight vehicle.

- Shall be capable of formulating a flight dynamic model for the vehicle (conventional fixed wing/launch vehicle) and use it along with the aerodynamic model to analyse the performance and stability of the flight vehicle.

- Shall be capable of performing the preliminary calculations for design and tracking of satellite/spacecraft trajectories.

- Shall have an understanding of the design process of the flight vehicle and the interplay between the vehicle sub systems.

- Shall also have the opportunity to be introduced to advanced topics in the areas of Aerodynamics, Optimisation, Flight Mechanics and Control through the elective courses offered.
SEMESTER I

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE601</td>
<td>Mathematical Methods in Aerospace Engg.</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>AE603</td>
<td>Aerodynamics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>AE604</td>
<td>Atmospheric Flight Mechanics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>AE605</td>
<td>Spaceflight Mechanics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>AE613</td>
<td>Compressible Flow</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>E01</td>
<td>Elective I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total 18 0 0 18

SEMESTER II

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE606</td>
<td>Flight Dynamics and Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>E02</td>
<td>Elective II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>E03</td>
<td>Elective III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>E04</td>
<td>Elective IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>E05</td>
<td>Elective V</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>AE801</td>
<td>Aerodynamics and Flight Mechanics Lab</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Total 15 0 6 17

SEMESTER III

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE607</td>
<td>Aerospace Vehicle Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>AE851</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>AE853</td>
<td>Project Work – Phase I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
</tbody>
</table>

Total 3 0 0 18

SEMESTER IV

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE853</td>
<td>Project Work – Phase II</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
</tbody>
</table>
LIST OF ELECTIVES

<table>
<thead>
<tr>
<th>CODE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE810</td>
<td>Linear Algebra and Perturbation Methods</td>
</tr>
<tr>
<td>AE821</td>
<td>Experimental Aerodynamics</td>
</tr>
<tr>
<td>AE822</td>
<td>Aeroacoustics</td>
</tr>
<tr>
<td>AE823</td>
<td>Hypersonic Aerothermodynamics</td>
</tr>
<tr>
<td>AE824</td>
<td>Turbulence in Fluid Flows</td>
</tr>
<tr>
<td>AE825</td>
<td>Computational Methods for Compressible Flows</td>
</tr>
<tr>
<td>AE826</td>
<td>Navigation Guidance and Control</td>
</tr>
<tr>
<td>AE827</td>
<td>Optimal Control Theory</td>
</tr>
<tr>
<td>AE828</td>
<td>Space Mission Design</td>
</tr>
<tr>
<td>AE829</td>
<td>High Temperature Gas Dynamics</td>
</tr>
<tr>
<td>AE844</td>
<td>Multidisciplinary Design Optimization</td>
</tr>
<tr>
<td>AE845</td>
<td>Boundary Layer Theory</td>
</tr>
<tr>
<td>AE846</td>
<td>Introduction to Flow Instability</td>
</tr>
<tr>
<td>AE847</td>
<td>Applied Aerodynamics</td>
</tr>
<tr>
<td>AE848</td>
<td>Modern Aircraft Control Design</td>
</tr>
<tr>
<td>AE849</td>
<td>Modeling and Simulation of Aerospace Vehicles</td>
</tr>
</tbody>
</table>

Note: Electives from other streams may also be credited after approval

SEMESTER–WISE CREDITS

<table>
<thead>
<tr>
<th>Semester</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>18</td>
<td>17</td>
<td>18</td>
<td>17</td>
<td>70</td>
</tr>
</tbody>
</table>
AE601 MATHEMATICAL METHODS IN AEROSPACE ENGINEERING 3 credits

References:

AE603 AERODYNAMICS 3 credits

References:

AE604 ATMOSPHERIC FLIGHT MECHANICS 3 credits

Overview of aerodynamics – propulsion – atmosphere and aircraft instrumentation – Aircraft Performance: range, endurance, gliding, climbing flight, pull-up, pulldown, take-off, landing, accelerating climb, turning flight, V-n diagrams – optimal cruise trajectories – Static Stability & Control: frames of reference (body axis, wind axis) static longitudinal, directional, lateral stability and control, stick fixed and stick free stability, hinge moments, trim-tabs, aerodynamic balancing.

References:

AE605 SPACEFLIGHT MECHANICS 3 credits

References:

AE613 COMpressible Flow 3 credits

References:

E01 ELECTIVE I 3 credits
AE606 FLIGHT DYNAMICS AND CONTROL 3 credits

References:

E02 ELECTIVE II 3 credits

E03 ELECTIVE III 3 credits

E04 ELECTIVE IV 3 credits

E05 ELECTIVE V 3 credits

AE801 AERODYNAMICS AND FLIGHT MECHANICS LAB 2 credits

SEMESTER III

AE607 AEROSPACE VEHICLE DESIGN 3 credits

References:

AE851 SEMINAR 1 credit

AE853 PROJECT WORK — PHASE I 14 credits

SEMESTER IV

AE853 PROJECT WORK — PHASE II 17 credits
ELECTIVES

AE810 LINEAR ALGEBRA AND PERTURBATION METHODS 3 credits

References:

AE821 EXPERIMENTAL AERODYNAMICS 3 credits

Concept of similarity and design of experiments – Measurement uncertainty – Design of subsonic, transonic, supersonic, hypersonic, and high enthalpy test facilities – Transducers and their response characteristics – Measurement of pressure, temperature, velocity, forces, moments, and dynamic stability derivatives – Flow visualization techniques: Optical measurement techniques, refractive index based measurements, scattering based measurements – Data acquisition and signal conditioning – Signal and image processing.

References:

AE822 AEROACoustics

References:

AE823 HYPERSONIC AEROTHERMODYNAMICS

References:

AE824
TURBULENCE IN FLUID FLOWS
3 credits

References:

AE825
COMPUTATIONAL METHODS FOR COMPRESSIBLE FLOWS
3 credits

References:

AE826 NAVIGATION GUIDANCE AND CONTROL

References:

AE827 OPTIMAL CONTROL THEORY

References:

AE828 SPACE MISSION DESIGN 3 credits

Launch vehicle ascent trajectory design – Reentry trajectory design – Low thrust trajectory design – Satellite constellation design – Rendezvous mission design – Ballistic lunar and interplanetary trajectory design – Basics of optimal control theory – Mission design elements for various missions – Space flight trajectory optimization – Direct and indirect optimization techniques – Restricted 3-body problem – Lagrangian points – Mission design to Lagrangian point.

References:

AE829 HIGH TEMPERATURE GAS DYNAMICS 3 credits

References:

References:

Boundary Layer Theory

References:

INTRODUCTION TO FLOW INSTABILITY 3 credits

References:

APPLIED AERODYNAMICS 3 credits

References:

MODERN AIRCRAFT CONTROL DESIGN 3 credits

missile dynamics, inertial navigation system – Solution of homogeneous state equations – Concept of fundamental matrix and state transition matrix – Methods for evaluating state transition matrix – Solution of nonhomogeneous equations – Phase variable and Jordan canonical forms – Controllability and observability of the systems, pole placement design with full state feedback – Introduction to optimal control.

References:

AE849 MODELING AND SIMULATION OF AEROSPACE VEHICLES

3 credits

References: