While statements

The while statement is the simplest of the four loops that C++ provides, and it has a definition very similar to that of an if statement:

while (expression)

 statement;

A while statement is declared using the while keyword. When a while statement is executed, the expression is evaluated. If the expression evaluates to true (non-zero), the statement executes.

However, unlike an if statement, once the statement has finished executing, control returns to the top of the while statement and the process is repeated.

Let’s take a look at a simple while loop. The following program prints all the numbers from 0 to 9:

	1

2

3

4

5

6

7

8

9

10

11

12

	#include <iostream>

int main()

{

int count = 0;

 while (count < 10)

 {

 std::cout << count << " ";

 ++count;

 }

 std::cout << "done!";

 return 0;

}

This outputs:

0 1 2 3 4 5 6 7 8 9 done!

Let’s take a closer look at what this program is doing. First, count is initialized to 0. 0 < 10 evaluates to true, so the statement block executes. The first statement prints 0, and the second increments count to 1. Control then returns back to the top of the while statement. 1 < 10 evaluates to true, so the code block is executed again. The code block will repeatedly execute until count is 10, at which point 10 < 10 will evaluate to false, and the loop will exit.

It is possible that a while statement executes 0 times. Consider the following program:

	1

2

3

4

5

6

7

8

9

10

11

12

	#include <iostream>

int main()

{

 int count = 15;

 while (count < 10)

 {

 std::cout << count << " ";

 ++count;

 }

 std::cout << "done!";

 return 0;

}

The condition 15 < 10 immediately evaluates to false, so the while statement is skipped. The only thing this program prints is done!.
Infinite loops
On the other hand, if the expression always evaluates to true, the while loop will execute forever. This is called an infinite loop. Here is an example of an infinite loop:

	2

3

4

5

6

7

8

9

10
	#include <iostream>

int main()

{

 int count = 0;

 while (count < 10) // this condition will never be false

 std::cout << count << " "; // so this line will repeatedly execute

 return 0; // this line will never execute

}

Because count is never incremented in this program, count < 10 will always be true. Consequently, the loop will never terminate, and the program will print "0 0 0 0 0 ..." forever.

We can declare an intentional infinite loop like this:

	1

2

3

4
	while (1) // or while (true)

{

// this loop will execute forever

}

The only way to exit an infinite loop is through a return statement, a break statement, an exit statement, a goto statement, an exception being thrown, or the user killing the program.

Programs that run until the user decides to stop them sometimes intentionally use an infinite loop along with a return, break, or exit statement to terminate the loop. It is common to see this kind of loop in web server applications that run continuously and service web requests.
Loop variables
Often, we want a loop to execute a certain number of times. To do this, it is common to use a loop variable, often called a counter. A loop variable is an integer variable that is declared for the sole purpose of counting how many times a loop has executed. In the examples above, the variable count is a loop variable.

Loop variables are often given simple names, such as i, j, or k. However, naming variables i, j, or k has one major problem. If you want to know where in your program a loop variable is used, and you use the search function on i, j, or k, the search function will return half your program! Many words have an i, j, or k in them. Consequently, a better idea is to use iii, jjj, or kkk as your loop variable names. Because these names are more unique, this makes searching for loop variables much easier, and helps them stand out as loop variables. An even better idea is to use "real" variable names, such as count, or a name that gives more detail about what you're counting.

It is best practice to use signed integers for loop variables. Using unsigned integers can lead to unexpected issues. Consider the following code:

	10

11

12

13

14

15

16

17

18
	#include <iostream>

int main()

{

 unsigned int count = 10;

 // count from 10 down to 0

while (count >= 0)

{

 if (count == 0)

 std::cout << "blastoff!";

 else

 std::cout << count << " ";

 --count;

 }

 return 0;

}

Take a look at the above example and see if you can spot the error. It's not very obvious.

It turns out, this program is an infinite loop. It starts out by printing "10 9 8 7 6 5 4 3 2 1 blastoff!" as desired, but then goes off the rails, and starts counting down from 4294967295. Why? Because the loop condition count >= 0 will never be false! When count is 0, 0 >= 0 is true. Then --count is executed, and count overflows back to 4294967295. And since 4294967295 is >= 0, the program continues. Because count is unsigned, it can never be negative, and because it can never be negative, the loop won't terminate.

Rule: Always use signed integers for your loop variables.
Iteration
Each time a loop executes, it is called an iteration.

Because the loop body is typically a block, and because that block is entered and exited with each iteration, any variables declared inside the loop body are created and then destroyed with each iteration. In the following example, variable x will be created and destroyed 5 times:

#include <iostream>

int main()

{

 int count = 1;

 int sum = 0; // sum is declared up here because we need it later (beyond the loop)

while (count <= 5) // iterate 5 times

{

int x; // x is created here with each iteration

std::cout << "Enter integer #" << count << ':';

std::cin >> x;

sum += x;

// increment the loop counter

++count;

} // x is destroyed here with each iteration

std::cout << "The sum of all numbers entered is: " << sum;

return 0;

}

For fundamental variables, this is fine. For non-fundamental variables (such as structs and classes) this may cause performance issues. Consequently, you may want to consider defining non-fundamental variables before the loop. This is another one of the cases where you might declare a variable well before its first actual use.

Note that variable count is declared outside the loop. This is necessary because we need the value to persist across iterations (not be destroyed with each iteration).

Often, we want to do something every n iterations, such as print a newline. This can easily be done by using the modulus operator on our counter:

#include <iostream>

// Iterate through every number between 1 and 50

int main()

{

 int count = 1;

 while (count <= 50)

 {

 // print the number (pad numbers under 10 with a leading 0 for formatting purposes)

if (count < 10)

 std::cout << "0" << count << " ";

 else

 std::cout << count << " ";

 // if the loop variable is divisible by 10, print a newline

 if (count % 10 == 0)

 std::cout << "\n";

// increment the loop counter

 ++count;

 }

 return 0;

}

This program produces the result:

01 02 03 04 05 06 07 08 09 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50
Nested loops
It is also possible to nest loops inside of other loops. In the following example, the inner loop and outer loops each have their own counters. However, note that the loop expression for the inner loop makes use of the outer loop's counter as well!

	11

12

13

14

15

16

17

18

19

20
	#include <iostream>

// Loop between 1 and 5

int main()

{

 int outer = 1;

 while (outer <= 5)

 {

 // loop between 1 and outer

 int inner = 1;

 while (inner <= outer)

 std::cout << inner++ << " ";

 // print a newline at the end of each row

 std::cout << "\n";

 ++outer;

 }

 return 0;

}

This program prints:

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

Do while statements
One interesting thing about the while loop is that if the loop condition is initially false, the while loop will not execute at all. It is sometimes the case that we know we want a loop to execute at least once, such as when displaying a menu. To help facilitate this, C++ offers the do-while loop:

do

 statement;

while (condition);

The statement in a do-while loop always executes at least once. After the statement has been executed, the do-while loop checks the condition. If the condition is true, the pathof execution jumps back to the top of the do-while loop and executes it again.

Here is an example of using a do-while loop to display a menu to the user and wait for the user to make a valid choice:

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
	#include <iostream>

int main()

{

 // selection must be declared outside do/while loop

 int selection;

 do

 {

 std::cout << "Please make a selection: \n";

 std::cout << "1) Addition\n";

 std::cout << "2) Subtraction\n";

 std::cout << "3) Multiplication\n";

 std::cout << "4) Division\n";

 std::cin >> selection;

}

 while (selection != 1 && selection != 2 &&

selection != 3 && selection != 4);

// do something with selection here

// such as a switch statement

 std::cout << "You selected option #" << selection << "\n";

 return 0;

}

One interesting thing about the above example is that the selection variable must be declared outside of the do block. Why do you think that is?

If the selection variable were to be declared inside the do block, it would be destroyed when the do block terminates, which happens before the while conditional is executed. But we need the variable to use in the while conditional -- consequently, the selection variable must be declared outside the do block.

Generally it is good form to use a do-while loop instead of a while loop when you intentionally want the loop to execute at least once, as it makes this assumption explicit -- however, it’s not that big of a deal either way.

For statements
By far, the most utilized looping statement in C++ is the for statement. The for statement (also called a for loop) is ideal when we know exactly how many times we need to iterate, because it lets us easily define, initialize, and change the value of loop variables after each iteration.

The for statement looks pretty simple in abstract:

for (init-statement; condition-expression; end-expression)

 statement;

The easiest way to understand a for loop is to convert it into an equivalent while loop:

{ // note the block here

 init-statement;

 while (condition-expression)

 {

 statement;

 end-expression;

 }

} // variables defined inside the loop go out of scope here

The variables defined inside a for loop have a special kind of scope called loop scope. Variables with loop scope exist only within the loop, and are not accessible outside of it.
Evaluation of for statements
A for statement is evaluated in 3 parts:

1) The init-statement is evaluated. Typically, the init-statement consists of variable definitions and initialization. This statement is only evaluated once, when the loop is first executed.

2) The condition-expression is evaluated. If this evaluates to false, the loop terminates immediately. If this evaluates to true, the statement is executed.

3) After the statement is executed, the end-expression is evaluated. Typically, this expression is used to increment or decrement the variables declared in the init-statement. After the end-expression has been evaluated, the loop returns to step 2.

Let’s take a look at a sample for loop and discuss how it works:

	1

2
	for (int count=0; count < 10; ++count)

 std::cout << count << " ";

First, we declare a loop variable named count, and assign it the value 0.

Second, count < 10 is evaluated, and since count is 0, 0 < 10 evaluates to true. Consequently, the statement executes, which prints 0.

Third, ++count is evaluated, which increments count to 1. Then the loop goes back to the second step.

Now, 1 < 10 is evaluated to true, so the loop iterates again. The statement prints 1, and count is incremented to 2.
2 < 10 evaluates to true, the statement prints 2, and count is incremented to 3. And so on.

Eventually, count is incremented to 10, 10 < 10 evaluates to false, and the loop exits.

Consequently, this program prints the result:

0 1 2 3 4 5 6 7 8 9
For loops can be hard for new programmers to read -- however, experienced programmers love them because they are a very compact way to do loops of this nature. For the sake of example, let's uncompact the above for loop by converting it into an equivalent while loop:

	1

2

3

4

5

6

7

8
	{ // outer braces ensure loop scope

 int count = 0;

 while (count < 10)

 {

 cout << count << " ";

 ++count;

 }

}

That doesn't look so bad, does it? Note that the outer braces are necessary here, because count goes out of scope when the loop ends.
More for loop examples
Here's an example of a for loop used to calculate an exponentiation of integers:

	1

2

3

4

5

6

7

8

9

10
	// returns the value nBase ^ nExp

int pow(int base, int exponent)

{

 int total = 1;

 for (int count=0; count < exponent; ++count)

 total *= base;

return total;

}

This function returns the value base^exponent (base to the exponent power).

This is a straightforward incrementing for loop, with count looping from 0 up to (but excluding) exponent.

If exponent is 0, the for loop will execute 0 times, and the function will return 1.
If exponent is 1, the for loop will execute 1 time, and the function will return 1 * base.
If exponent is 2, the for loop will execute 2 times, and the function will return 1 * base * base.

Although most for loops increment the loop variable by 1, we can decrement it as well:

	1

2
	for (int count = 9; count >= 0; --count)

 cout << count << " ";

This prints the result:

9 8 7 6 5 4 3 2 1 0

Alternately, we can change the value of our loop variable by more than 1 with each iteration:

	1

2
	for (int count = 9; count >= 0; count -= 2)

 cout << count << " ";

This prints the result:

9 7 5 3 1
Off-by-one errors
One of the biggest problems that new programmers have with for loops (and other kinds of loops) is off-by-one errors. Off-by-one errors occur when the loop iterates one too many or one too few times. This generally happens because the wrong relational operator is used in the conditional-expression (eg. > instead of >=). These errors can be hard to track down because the compiler will not complain about them -- the program will run fine, but it will produce the wrong result.

When writing for loops, remember that the loop will execute as long as the conditional-expression is true. Generally it is a good idea to test your loops using known values to make sure that they work as expected. A good way to do this is to test your loop with known inputs that cause it to iterate 0, 1, and 2 times. If it works for those, it will likely work for any number of iterations.
Rule: Test your loops with known inputs that cause it to iterate 0, 1, and 2 times.
Omitted expressions
It is possible to write for loops that omit any or all of the expressions. For example:

	1

2

3

4

5

6
	int count=0;

for (; count < 10;)

{

 cout << count << " ";

 ++count;

}

This for loop produces the result:

0 1 2 3 4 5 6 7 8 9

Rather than having the for loop do the initialization and incrementing, we've done it manually. We have done so purely for academic purposes in this example, but there are cases where not declaring a loop variable (because you already have one) or not incrementing it (because you're incrementing it some other way) are desired.

Although you do not see it very often, it is worth noting that the following example produces an infinite loop:
for (;;)

 statement;

The above example is equivalent to:

while (true)

 statement;
Multiple declarations
Although for loops typically iterate over only one variable, sometimes for loops need to work with multiple variables. When this happens, the programmer can make use of the comma operator in order to assign (in the init-statement) or change (in the end-statement) the value of multiple variables:

	1

2

3
	int iii, jjj;

for (iii=0, jjj=9; iii < 10; ++iii, --jjj)

 cout << iii << " " << jjj << endl;

This loop assigns values to two previously declared variables: iii to 0, and jjj to 9. It iterates iii over the range 0 to 9, and each iteration iii is incremented and jjj is decremented.

This program produces the result:

0 9

1 8

2 7

3 6

4 5

5 4

6 3

7 2

8 1

9 0

This is the only place in C++ where the comma operator typically gets used.

Note: More typically, we'd write the above loop as:

	1

2
	for (int iii=0, jjj=9; iii < 10; ++iii, --jjj)

 cout << iii << " " << jjj << endl;

In this case, the comma in the init-statement is part of the variable definition syntax, not a use of the comma operator. But the effect is identical.
For loops in old code
In older versions of C++, variables defined as part of the init-statement did not get destroyed at the end of the loop. This meant that you could have something like this:

	1

2

3

4

5

6

7
	for (int count=0; count < 10; ++count)

 std::cout << count << " ";

// count is not destroyed in older compilers

std::cout << "\n";

std::cout << "I counted to: " << count << "\n"; // so you can still use it here

This use has been disallowed, but you may still see it in older code.
Nested for loops
Like other types of loops, for loops can be nested inside other loops. In the following example, we're nesting a for loop inside another for loop:

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
	#include <iostream>

int main()

{

for (char c = 'a'; c <= 'e'; ++c) // outer loop on letters

{

std::cout << c; // print our letter first

for (int i = 0; i < 3; ++i) // inner loop on all numbers

std::cout << i;

std::cout << '\n';

}

return 0;

}

For each iteration of the outer loop, the inner loop runs in its entirety. Consequently, the output is:

a012

b012

c012

d012

e012

Here's some more detail on what's happening here. The outer loop runs first, and char c is set to 'a'. Then the loop body executes, with c set to 'a'. This prints 'a', executes the inner loop entirely (which prints '0', '1', and '2'). Then a newline is printed. Now the loop body is finished, so the outer loop returns to the top and the loop condition is re-evaluated. Since the loop condition is true, c is incremented (to 'b'), and the next iteration of the outer loop begins. This prints ("b012\n"). And so on.
Conclusion
For statements are the most commonly used loop in the C++ language. Even though its syntax is typically a bit confusing to new programmers, you will see for loops so often that you will understand them in no time at all!

