Arrays

Fortunately, structs are not the only aggregate data type in C++. An array is an aggregate data type that lets us access many variables of the same type through a single identifier.

Consider the case where you want to record the test scores for 30 students in a class. Without arrays, you would have to allocate 30 almost-identical variables!

	1

2

3

4

5

6
	// allocate 30 integer variables (each with a different name)

int testScoreStudent1;

int testScoreStudent2;

int testScoreStudent3;

// ...

int testScoreStudent30;

Arrays give us a much easier way to do this. The following array definition is essentially equivalent:

	1
	int testScore[30]; // allocate 30 integer variables in a fixed array

In an array variable declaration, we use square brackets ([]) to tell the compiler both that this is an array variable (instead of a normal variable), as well as how many variables to allocate (called the array length).

In the above example, we declare a fixed array named testScore, with a length of 30. A fixed array (also called a fixed length array or fixed size array) is an array where the length is known at compile time. When testScore is instantiated, the compiler will allocate 30 integers.
Array elements and subscripting
Each of the variables in an array is called an element. Elements do not have their own unique names. Instead, to access individual elements of an array, we use the array name, along with the subscript operator ([]), and a parameter called a subscript (or index) that tells the compiler which element we want. This process is called subscripting or indexing the array.

In the example above, the first element in our array is testScore[0]. The second is testScore[1]. The tenth is testScore[9]. The last element in our testScore array is testScore[29]. This is great because we no longer need to keep track of a bunch of different (but related) names -- we can just vary the subscript to access different elements.
Important: Unlike everyday life, where we typically count starting from 1, in C++, arrays always count starting from 0!
For an array of length N, the array elements are numbered 0 through N-1! This is called the array’s range.
An example array program
Here’s a sample program that puts together the definition and indexing of an array:

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
	#include <iostream>

int main()

{
 int prime[5]; // hold the first 5 prime numbers
 prime[0] = 2; // The first element has index 0
 prime[1] = 3;
 prime[2] = 5;
 prime[3] = 7;
 prime[4] = 11; // The last element has index 4 (array length-1)

 std::cout << "The lowest prime number is: " << prime[0] << "\n";
 std::cout << "The sum of the first 5 primes is: " << prime[0] + prime[1] + prime[2] + prime[3] + prime[4] << "\n";

 return 0;

}

This prints:

The lowest prime number is: 2

The sum of the first 5 primes is: 28
Array data types
Arrays can be made from any data type. Consider the following example, where we declare an array of doubles:

	1

2

3

4

5

6

7

8

9

10

11

12

13
	#include <iostream>

int main()

{
 double array[3]; // allocate 3 doubles
 array[0] = 2.0;
 array[1] = 3.0;
 array[2] = 4.3;

 cout << "The average is " << (array[0] + array[1] + array[2]) / 3 << "\n";

 return 0;

}

This program produces the result:

The average is 3.1

Arrays can also be made from structs. Consider the following example:

	1

2

3

4

5

6
	struct Rectangle

{
 int length;
 int width;

};

Rectangle rects[5]; // declare an array of 5 Rectangle

To access a struct member of an array element, first pick which array element you want, and then use the member selection operator to select the struct member you want:

	1
	rects[0].length = 24;

Array subscripts
In C++, array subscripts must always be an integral type (char, short, int, long, long long, etc… -- and strangely enough, bool). These subscripts can be either a constant or non-constant value.

Here are some examples:

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
	int array[5]; // declare an array of length 5

// using a literal (constant) index:

array[1] = 7; // ok

// using an enum (constant) index

enum Animals

{
 ANIMAL_CAT = 2

};

array[ANIMAL_CAT] = 4; // ok

// using a variable (non-constant) index:

short index = 3;

array[index] = 7; // ok

Fixed array declarations
When declaring a fixed array, the length of the array (between the square brackets) must be a compile-time constant. This is because the length of a fixed array must be known at compile time. Here are some different ways to declare fixed arrays

	12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
	// using a literal constant

int array[5]; // Ok

// using a macro symbolic constant

#define ARRAY_LENGTH 5

int array[ARRAY_LENGTH]; // Syntactically okay, but don't do this

// using a symbolic constant

const int arrayLength = 5;

int array[arrayLength]; // Ok

// using a non-const variable

int length;

std::cin >> length;

int array[length]; // Not ok -- length is not a compile-time constant!

// using a runtime const variable

int temp = 5;

const int length = temp; // the value of length isn't known until runtime, so this is a runtime constant, not a compile-time constant!

int array[length]; // Not ok

Note that in the last two cases, an error should result because length is not a compile-time constant. Some compilers may allow these kinds of arrays (for C99 compatibility reasons), but they are invalid according to the C++ standard, and should be not be used in C++ programs.
A note on dynamic arrays
Because fixed arrays have memory allocated at compile time, that introduces two limitations:

· Fixed arrays cannot have a length based on either user input or some other value calculated at runtime.

· Fixed arrays have a fixed length that can not be changed.

In many cases, these limitations are problematic. Fortunately, C++ supports a second kind of array known as a dynamic array. The length of a dynamic array can be set at runtime, and their length can be changed. However, dynamic arrays are a little more complicated to instantiate, so we’ll cover them later in the chapter.
Summary
Fixed arrays provide an easy way to allocate and use multiple variables of the same type so long as the length of the array is known at compile time.

We’ll look at more topics around fixed arrays in the next lesson.

Arrays and loops

Consider the case where we want to find the average test score of a class of students. Using individual variables:

	1

2

3

4

5

6

7

8

9
	const int numStudents = 5;

int score0 = 84;

int score1 = 92;

int score2 = 76;

int score3 = 81;

int score4 = 56;

int totalScore = score0 + score1 + score2 + score3 + score4;

double averageScore = static_cast<double>(totalScore) / numStudents;

That’s a lot of variables and a lot of typing -- and this is just 5 students! Imagine how much work we’d have to do for 30 students, or 150.

Plus, if a new student is added, a new variable has to be declared, initialized, and added to the totalScore calculation. Any time you have to modify old code, you run the risk of introducing errors.

Using arrays offers a slightly better solution:

	1

2

3

4
	const int numStudents = 5;

int scores[numStudents] = { 84, 92, 76, 81, 56 };

int totalScore = scores[0] + scores[1] + scores[2] + scores[3] + scores[4];

double averageScore = static_cast<double>(totalScore) / numStudents;

This cuts down on the number of variables declared significantly, but totalScore still requires each array element be listed individually. And as above, changing the number of students means the totalScore formula needs to be manually adjusted.

If only there were a way to loop through our array and calculate totalScore directly.
Loops and arrays
In a previous lesson, you learned that the array subscript doesn’t need to be a constant value -- it can be a variable. This means we can use a loop variable as an array index to loop through all of the elements of our array and perform some calculation on them. This is such a common thing to do that wherever you find arrays, you will almost certainly find loops! When a loop is used to access each array element in turn, this is often called iterating through the array.

Here’s our example above using a for loop:

	1

2

3

4

5

6

7

8

9
	int scores[] = { 84, 92, 76, 81, 56 };

const int numStudents = sizeof(scores) / sizeof(scores[0]);

int totalScore = 0;

// use a loop to calculate totalScore

for (int student = 0; student < numStudents; ++student)
 totalScore += scores[student];

double averageScore = static_cast<double>(totalScore) / numStudents;

This solution is ideal in terms of both readability and maintenance. Because the loop does all of our array element accesses, the formulas adjust automatically to account for the number of elements in the array. This means the calculations do not have to be manually altered to account for new students, and we do not have to manually add the name of new array elements!

Here’s an example of using a loop to search an array in order to determine the best score in the class:

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
	#include <iostream>

int main()

{
 int scores[] = { 84, 92, 76, 81, 56 };
 const int numStudents = sizeof(scores) / sizeof(scores[0]);

 int maxScore = 0; // keep track of our largest score
 for (int student = 0; student < numStudents; ++student)
 if (scores[student] > maxScore)
 maxScore = scores[student];

 std::cout << "The best score was " << maxScore << '\n';

 return 0;

}

In this example, we use a non-loop variable called maxScore to keep track of the highest score we’ve seen. maxScore is initialized to 0 to represent that we have not seen any scores yet. We then iterate through each element of the array, and if we find a score that is higher than any we’ve seen before, we set maxScore to that value. Thus, maxScore always represents the highest score out of all the elements we’ve searched so far. By the time we reach the end of the array, maxScore holds the highest score in the entire array.
Mixing loops and arrays
Loops are typically used with arrays to do one of three things:
1) Calculate a value (e.g. average value, total value)
2) Search for a value (e.g. highest value, lowest value).
3) Reorganize the array (e.g. ascending order, descending order)

When calculating a value, a variable is typically used to hold an intermediate result that is used to calculate the final value. In the above example where we are calculating an average score, totalScore holds the total score for all the elements examined so far.

When searching for a value, a variable is typically used to hold the best candidate value seen so far (or the array index of the best candidate). In the above example where we use a loop to find the best score, maxScore is used to hold the highest score encountered so far.
Arrays and off-by-one errors
One of the trickiest parts of using loops with arrays is making sure the loop iterates the proper number of times. Off-by-one errors are easy to make, and trying to access an element that is larger than the length of the array can have dire consequences. Consider the following program:

	1

2

3

4

5

6

7

8

9
	 int scores[] = { 84, 92, 76, 81, 56 };
 const int numStudents = sizeof(scores) / sizeof(scores[0]);

 int maxScore = 0; // keep track of our largest score
 for (int student = 0; student <= numStudents; ++student)
 if (scores[student] > maxScore)
 maxScore = scores[student];

 std::cout << "The best score was " << maxScore << '\n';

The problem with this program is that the conditional in the for loop is wrong! The array declared has 5 elements, indexed from 0 to 4. However, this array loops from 0 to 5. Consequently, on the last iteration, the array will execute this:

	1

2
	 if (scores[5] > maxScore)
 maxScore = scores[5];

But scores[5] is undefined! This can cause all sorts of issues, with the most likely being that scores[5] results in a garbage value. In this case, the probable result is that maxScore will be wrong.

However, imagine what would happen if we inadvertently assigned a value to array[5]! We might overwrite another variable (or part of it), or perhaps corrupt something -- these types of bugs can be very hard to track down!

Consequently, when using loops with arrays, always double-check your loop conditions to make sure you do not introduce off-by-one errors.

Multidimensional Arrays

The elements of an array can be of any data type, including arrays! An array of arrays is called a multidimensional array.

	1
	int array[3][5]; // a 3-element array of 5-element arrays

Since we have 2 subscripts, this is a two-dimensional array.

In a two-dimensional array, it is convenient to think of the first (left) subscript as being the row, and the second (right) subscript as being the column. This is called row-major order. Conceptually, the above two-dimensional array is laid out as follows:

[0][0] [0][1] [0][2] [0][3] [0][4] // row 0

[1][0] [1][1] [1][2] [1][3] [1][4] // row 1

[2][0] [2][1] [2][2] [2][3] [2][4] // row 2

To access the elements of a two-dimensional array, simply use two subscripts:

	1
	array[2][3] = 7;

Initializing two-dimensional arrays
To initialize a two-dimensional array, it is easiest to use nested braces, with each set of numbers representing a row:

	1

2

3

4

5

6
	int array[3][5] =

{

{ 1, 2, 3, 4, 5 }, // row 0

{ 6, 7, 8, 9, 10 }, // row 1

{ 11, 12, 13, 14, 15 } // row 2

};

Although some compilers will let you omit the inner braces, we highly recommend you include them anyway, both for readability purposes and because of the way that C++ will replace missing initializers with 0.

	1

2

3

4

5

6
	int array[3][5] =

{

{ 1, 2}, // row 0 = 1, 2, 0, 0, 0

{ 6, 7, 8 }, // row 1 = 6, 7, 8, 0, 0

{ 11, 12, 13, 14 } // row 2 = 11, 12, 13, 14, 0

};

Two-dimensional arrays with initializer lists can omit (only) the leftmost length specification:

	1

2

3

4

5

6
	int array[][5] =

{

{ 1, 2, 3, 4, 5 },

{ 6, 7, 8, 9, 10 },

{ 11, 12, 13, 14, 15 }

};

The compiler can do the math to figure out what the array length is. However, the following is not allowed:

	1

2

3

4

5
	int array[][] =

{

{ 1, 2, 3, 4 },

{ 5, 6, 7, 8 }

};

Just like normal arrays, multidimensional arrays can still be initialized to 0 as follows:

	1
	int array[3][5] = { 0 };

Note that this only works if you explicitly declare the length of the array! Otherwise, you will get a two-dimensional array with 1 row.
Accessing elements in a two-dimensional array
Accessing all of the elements of a two-dimensional array requires two loops: one for the row, and one for the column. Since two-dimensional arrays are typically accessed row by row, the row index is typically used as the outer loop.

	1

2

3
	for (int row = 0; row < numRows; ++row) // step through the rows in the array
 for (int col = 0; col < numCols; ++col) // step through each element in the row
 std::cout << array[row][col];

In C++11, for-each loops can also be used with multidimensional arrays. We’ll cover for-each loops in detail later.
Multidimensional arrays larger than two dimensions
Multidimensional arrays may be larger than two dimensions. Here is a declaration of a three-dimensional array:

	1
	int array[5][4][3];

Three-dimensional arrays are hard to initialize in any kind of intuitive way using initializer lists, so it’s typically better to initialize the array to 0 and explicitly assign values using nested loops.

Accessing the element of a three-dimensional array is analogous to the two-dimensional case:

	1
	std::cout << array[3][1][2];

A two-dimensional array example
Let’s take a look at a practical example of a two-dimensional array:

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
	#include <iostream>

int main()

{
 // Declare a 10x10 array
 const int numRows = 10;
 const int numCols = 10;
 int product[numRows][numCols] = { 0 };

 // Calculate a multiplication table
 for (int row = 0; row < numRows; ++row)
 for (int col = 0; col < numCols; ++col)
 product[row][col] = row * col;

// Print the table

for (int row = 1; row < numRows; ++row)

{
 for (int col = 1; col < numCols; ++col)
 std::cout << product[row][col] << "\t";

 std::cout << '\n';
 }

 return 0;

}

This program calculates and prints a multiplication table for all values between 1 and 9 (inclusive). Note that when printing the table, the for loops start from 1 instead of 0. This is to omit printing the 0 column and 0 row, which would just be a bunch of 0s! Here is the output:

1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18

3 6 9 12 15 18 21 24 27

4 8 12 16 20 24 28 32 36

5 10 15 20 25 30 35 40 45

6 12 18 24 30 36 42 48 54

7 14 21 28 35 42 49 56 63

8 16 24 32 40 48 56 64 72

9 18 27 36 45 54 63 72 81

Two dimensional arrays are commonly used in tile-based games, where each array element represents one tile. They’re also used in 3d computer graphics (as matrices) in order to rotate, scale, and reflect shapes.

C-style strings
We define a string as a collection of sequential characters, such as “Hello, world!”. Strings are the primary way in which we work with text in C++, and std::string makes working with strings in

C++ easy.

Modern C++ supports two different types of strings: std::string (as part of the standard library), and C-style strings (natively, as inherited from the C language). It turns out that std::string is implemented using C-style strings. In this lesson, we’ll take a closer look at C-style strings.
C-style strings
A C-style string is simply an array of characters that uses a null terminator. A null terminator is a special character (‘\0’, ascii code 0) used to indicate the end of the string. More generically, A C-style string is called a null-terminated string.

To define a C-style string, simply declare a char array and initialize it with a string literal:

	1
	char myString[] = "string";

Although “string” only has 6 letters, C++ automatically adds a null terminator to the end of the string for us (we don’t need to include it ourselves). Consequently, myString is actually an array of length 7!

We can see the evidence of this in the following program, which prints out the length of the string, and then the ASCII values of all of the characters:

	1

2

3

4

5

6

7

8

9

10

11

12
	#include <iostream>

int main()

{
 char myString[] = "string";
 int length = sizeof(myString) / sizeof(myString[0]);
 std::cout << myString<< " has " << length << " characters.\n";
 for (int index = 0; index < length; ++index)
 std::cout << static_cast<int>(myString[index]) << " ";

 return 0;

}

This produces the result:

string has 7 characters.

115 116 114 105 110 103 0

That 0 is the ASCII code of the null terminator that has been appended to the end of the string.

When declaring strings in this manner, it is a good idea to use [] and let the compiler calculate the length of the array. That way if you change the string later, you won’t have to manually adjust the array length.

One important point to note is that C-style strings follow all the same rules as arrays. This means you can initialize the string upon creation, but you can not assign values to it using the assignment operator after that!

	1

2
	char myString[] = "string"; // ok

myString = "rope"; // not ok!

Since C-style strings are arrays, you can use the [] operator to change individual characters in the string:

	1

2

3

4

5

6

7

8

9

10
	#include <iostream>

int main()

{
 char myString[] = "string";
 myString[1] = 'p';
 std::cout << myString;

 return 0;

}

This program prints:

spring

When printing a C-style string, std::cout prints characters until it encounters the null terminator. If you accidentally overwrite the null terminator in a string (e.g. by assigning something to myString[6]), you’ll not only get all the characters in the string, but std::cout will just keep printing everything in adjacent memory slots until it happens to hit a 0!

Note that it’s fine if the array is larger than the string it contains:

	1

2

3

4

5

6

7

8

9
	#include <iostream>

int main()

{
 char name[20] = "Alex"; // only use 5 characters (4 letters + null terminator)
 std::cout << "My name is: " << name << '\n';

 return 0;

}

In this case, the string “Alex” will be printed, and std::cout will stop at the null terminator. The rest of the characters in the array are ignored.
C-style strings and std::cin
There are many cases where we don’t know in advance how long our string is going to be. For example, consider the problem of writing a program where we need to ask the user to enter their name. How long is their name? We don’t know until they enter it!

In this case, we can declare an array larger than we need:

	1

2

3

4

5

6

7

8

9

10

11
	#include <iostream>

int main()

{
 char name[255]; // declare array large enough to hold 255 characters
 std::cout << "Enter your name: ";
 std::cin >> name;
 std::cout << "You entered: " << name << '\n';

 return 0;

}

In the above program, we’ve allocated an array of 255 characters to name, guessing that the user will not enter this many characters. Although this is commonly seen in C/C++ programming, it is poor programming practice, because nothing is stopping the user from entering more than 255 characters (either unintentionally, or maliciously).

The recommended way of reading strings using cin is as follows:

	1

2

3

4

5

6

7

8

9

10
	#include <iostream>

int main()

{
 char name[255]; // declare array large enough to hold 255 characters
 std::cout << "Enter your name: ";
 std::cin.getline(name, 255);
 std::cout << "You entered: " << name << '\n';

 return 0;

}

This call to cin.getline() will read up to 254 characters into name (leaving room for the null terminator!). Any excess characters will be discarded. In this way, we guarantee that we will not overflow the array!
Manipulating C-style strings
C++ provides many functions to manipulate C-style strings as part of the <cstring> library. Here are a few of the most useful:

strcpy() allows you to copy a string to another string. More commonly, this is used to assign a value to a string:

	1

2

3

4

5

6

7

8

9

10
	#include <cstring>

int main()

{
 char source[] = "Copy this!";
 char dest[50];
 strcpy(dest, source);
 std::cout << dest; // prints "Copy this!"

 return 0;

}

However, strcpy() can easily cause array overflows if you’re not careful! In the following program, dest isn’t big enough to hold the entire string, so array overflow results.
	1

2

3

4

5

6

7

8

9

10
	#include <cstring>

int main()

{
 char source[] = "Copy this!";
 char dest[5]; // note that the length of dest is only 5 chars!
 strcpy(dest, source); // overflow!
 std::cout << dest;

 return 0;

}

In C++11, strcpy() was deprecated in favor of strcpy_s, which adds a new parameter to define the size of the destination. However, not all compilers support this function, and to use it, you have to define __STDC_WANT_LIB_EXT1__ with integer value 1. If your compiler doesn’t support strcpy_s, you can still use strcpy even though it’s deprecated.

	1

2

3

4

5

6

7

8

9

10

11
	#define __STDC_WANT_LIB_EXT1__ 1

#include <cstring> // for strcpy_s

int main()

{
 char source[] = "Copy this!";
 char dest[5]; // note that the length of dest is only 5 chars!
 strcpy_s(dest, 5, source); // An runtime error will occur in debug mode
 std::cout << dest;

 return 0;

}

Another useful function is the strlen() function, which returns the length of the C-style string (without the null terminator).

	1

2

3

4

5

6

7

8

9

10

11

12
	#include <iostream>

#include <cstring>

int main()

{
 char name[20] = "Alex"; // only use 5 characters (4 letters + null terminator)
 std::cout << "My name is: " << name << '\n';
 std::cout << name << " has " << strlen(name) << " letters.\n";
 std::cout << name << " has " << sizeof(name) / sizeof(name[0]) << " characters in the array.\n";

return 0;

}

The above example prints:

My name is: Alex

Alex has 4 letters.

Alex has 20 characters in the array.

Note the difference between strlen() and sizeof(). strlen() prints the number of characters before the null terminator, whereas sizeof() returns the size of the entire array, regardless of what’s in it.

Other useful functions:
strcat() -- Appends one string to another (dangerous)
strncat() -- Appends one string to another (with buffer length check)
strcmp() -- Compare two strings (returns 0 if equal)
strncmp() -- Compare two strings up to a specific number of characters (returns 0 if equal)

Here’s an example program using some of the concepts in this lesson:

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
	#include <iostream>

#include <cstring>

int main()

{
 // Ask the user to enter a string

 char buffer[255];

 std::cout << "Enter a string: ";

 std::cin.getline(buffer, 255);

 int spacesFound = 0;

 // Loop through all of the characters the user entered

 for (int index = 0; index < strlen(buffer); ++index)

 {

 // If the current character is a space, count it

 if (buffer[index] == ' ')

 spacesFound++;

 }

 std::cout << "You typed " << spacesFound << " spaces!\n";

 return 0;

}

Don’t use C-style strings
It is important to know about C-style strings because they are used in a lot of code. However, now that we’ve explained how they work, we’re going to recommend that you avoid them altogether whenever possible! Unless you have a specific, compelling reason to use C-style strings, use std::string (defined in the <string> header) instead. std::string is easier, safer, and more flexible.

