Sorry, you need to enable JavaScript to visit this website.

  • 11:50 PM, Sunday, 20 Jul 2025

English

 

Peer Reviewed Journal Articles

 Recent Articles


 1. Singh, U..,, Nidamanuri, R.R..,, (20250. Disaggregating IMERG satellite precipitation over Czech Republic: an innovative approach using hybrid extreme gradient boosting based on fuzzy spatial-temporal multivariate clustering, Journal of Big Data.

  2.   Chandra, H. and Nidamanuri, R.R. (2025). Dynamic spectral similarity method (DSSM): A novel method for automated identification of objects in hyperspectral imagery, IEEE Geoscience and Remote Sensing Letters, 22, 0.1109/LGRS.2025.3564386.

  3.   James, L., Nidamanuri, R.R. and Murali, K.S. GSR-SWIR: SWIR band for Resourcesat LISS-4 from LISS-3 using guided super-resolution, Remote Sensing Letters.

  4.    Gujarati, A., Nidamanuri, R.R., Singh, R.P. and Jha, V.B.Dynamics and Drivers of Changing Color of Lakes of India, Modelling Earth Systems and Environment, 11, 330. 10.1007/s40808-025-02526-5

  5.    Reji, J. and Nidamanuri, R.R. (2025). Deep learning-based multi-sensor approach for precision agricultural crop classification based on nitrogen levels, IEEE Geoscience and Remote Sensing Letters, 22, 10.1109/LGRS.2025.3556122.

  6.     Bahadur, F.T., Shah, S.R. and Nidamanuri, R.R. Land use land cover dynamics and its effect on air quality across north India using geo-spatial datasets, Environmental Quality Management

  7.     Kaushik, M., Nidamanuri, R.R., and Aparna, B. (2025). Hyperspectral discrimination of vegetable crops grown under organic and conventional cultivation practices: a machine learning approach, Nature Scientific Reports, 15, 7897.

  8.     Munipalle, V.K., Nelakuditi, U.R. and Nidamanuri, R.R. (2025). Distilling spectral-spatial knowledge for efficient hyperspectral image classification, Signal, Image and Video Processing.

  9.     Sarma, A.S. and Nidamanuri, R.R. (2025). Optimal band selection and transfer in drone-based hyperspectral images for plant-level vegetable crops identification using statistical-swarm intelligence (SSI) hybrid   algorithms, Ecological Informatics, 86, 103051.

 10.     Munipalle, V.K., Nelakuditi, U.R. and Nidamanuri, R.R. (2025). Functional dynamics of the knowledge transfer and pre-training in deep learning approaches for hyperspectral image classification, Journal of the Indian Society of Remote Sensing, https://doi.org/10.1007/s12524-025-02162-7.   

 

 

Past Articles                                                                        

       

11.        Sarma, A.S. and Nidamanuri, R.R. (2025). Nature-based metaheuristic optimisation techniques for band selection in drone-based hyperspectral images for plant-level crop classification, Stochastic Environmental Research and Risk Assessment, https://doi.org/10.1007/s00477-024-02884-z 

12.        Bahadur, F.T., Shah, S.R. and Nidamanuri, R.R. (2025). A brief outline of indoor air quality, its monitoring, its modelling, and its impacts, Journal of Environmental Engineering, 151(5),https://doi.org/10.1061/JOEEDU.EEENG-7929.

13.        Sivaganesh B., Chaitra H., Nidamanuri, R.R., Sharathchandra, R.G. and Narayanan, P. (2025). Hyperspectral detection and differentiation of various levels of Fusarium wilt in tomato crop using machine learning and statistical approaches, Journal of Crop health, 77, 42. https://doi.org/10.1007/s10343-024-01100-w

14.        Manohar, C.V.S.S., Jha, S.S., Nidamanuri R.R. and Dadhwal, V.K. (2024), Precision crop mapping: within plant canopy discrimination of crop and soil using multi-sensor hyperspectral imagery, Nature Scientific Reports, 22;14(1): 24903. doi: 10.1038/s41598-024-75394-1.

15.        Harsha Chandra and Nidamanuri R.R. (2024). Object-based spectral library for knowledge-transfer-based crop detection in drone-based hyperspectral imagery, Precision Agriculture, 26, 6 (2025). https://doi.org/10.1007/s11119-024-10203-3

16.        Punya P. and Nidamanuri R.R. (2024). Analysis of long-term changes in algal bloom pattern and their association with ocean, atmosphere, and land-based processes across the northern Indian Ocean, Advances in Space Research, 74, 1103-1119, https://doi.org/10.1016/j.asr.2024.04.040.

17.        Kumar, A., Rao, T.N., Nidamanuri, R.R. and Radhakrishna, B. (2024). Unraveling the microphysical processes in convective cells during the passage of Nivar cyclone using X-band dual-polarization radar, Atmospheric Research, 309, 107593, https://doi.org/10.1016/j.atmosres.2024.107593

18.        Bisht, D.S., Rao, T.N., Nidamanuri, R.R., Chandrakanth, S.V. (2024). Nowcasting of storms using predicted integrated water vapor with a machine learning technique and satellite brightness temperature, IEEE Transactions on Geoscience and Remote Sensing, pp. 1-8, 2024, doi: 10.1109/TGRS.2024.3429525.

19.        ReJi, J. and Nidamanuri, R.R. (2024). Deep learning-based prediction of plant height and crown area of vegetable crops using LiDAR point cloud, Nature Scientific Reports, 14, 14903. https://doi.org/10.1038/s41598-024-65322-8.

20.        Munipalle, V.K., Nelakuditi, U.R., Manohar Kumar, CVSS and Nidamanuri, R.R (2024). Ultra-high-resolution hyperspectral imagery datasets for precision agriculture applications, Data in Brief, 55, 110649, https://doi.org/10.1016/j.dib.2024.110649.

21.        Rodda, S.R., Fararoda, R., Gopalakrishnan, R., Nidamanuri, R.R. et al. (2024). LiDAR-based reference aboveground biomass maps for tropical forests of South Asia and Central Africa. Nature Scientific Data, 11, 334. https://doi.org/10.1038/s41597-024-03162-X

22.        Bahadur, F.T., Shah, S.R. & Nidamanuri, R.R. (2023). Applications of remote sensing vis-à-vis machine learning in air quality monitoring and modelling: a review, Environmental Monitoring and Assessment 195, 1502. https://doi.org/10.1007/s10661-023-12001-2

23.        Bahadur, F.T., Shah, S.R. & Nidamanuri, R.R. (2023). Air pollution monitoring, and modelling: an overview, Environmental Forensics, DOI: 10.1080/15275922.2023.2297437

24.        Rajesh, C.B, Manohar Kumar, C.V.S.S., Jha, S.S., Ramachandran, K.I. and Nidamanuri, R.R. (2023). In-situ and airborne hyperspectral data for detecting agricultural activities in a dense forest landscape, Data in Brief, 50, 109510, https://doi.org/10.1016/j.dib.2023.109510.

25.        Ujjwal, S. Petr M., Martin, H., Yannis, M., R.R. Nidamanuri, Sadaf, N., Johanna, R.B., Filip, S., Jirl, V., Lubomir, R. and Akhilesh, S. R. (2023).  Hybrid multi-model ensemble learning for reconstructing the gridded runoff of Europe for 500 years, Information Fusion, 97, 101807, https://doi.org/10.1016/j.inffus.2023.101807.

26.        Dubacharla, G. and Nidamanuri, R.R. (2023). Shadow and illumination invariant classification for high-resolution images, Digital Signal Processing, 136, 104007. https://doi.org/10.1016/j.dsp.2023.104007

27.        Rodda, S.R., Nidamanuri, R.R., Fararoda, R., Mayamanikandan, T., Rajashekar (2023).  Evaluation of height metrics and above-ground biomass density from GEDI and ICESat-2 over Indian tropical dry forests using Airborne LiDAR data, Journal of the Indian Society of Remote Sensing  https://doi.org/10.1007/s12524-023-01693-1

28.        Rodda, S.R., Nidamanuri, R.R., Mayamanikandan, T., Rajashekar, G., Jha, C.S. and Dadhwal, V.K. (2023). Non-destructive allometric modelling for Tropical dry deciduous forests of India using Terrestrial Laser Scanner, Journal of the Indian Society of Remote Sensing, https://doi.org/10.1007/s12524-022-01664-y

29.        Kumar, A., Rao, T.N., Nidamanuri, R.R. and Jyothi, K.A. (2023). Retrieval of microphysical parameters of monsoonal rain using X-band dual-polarization radar: their seasonal dependence and evaluation, Atmospheric Measurement Techniques, https://doi.org/10.5194/amt-2022-291

30.        D. S. Pankaj and R. R. Nidamanuri (2023).  A robust estimation method for automatic registration of remote sensing imagery, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064601.

31.        F. T. Jose, C. V. S. S. Manohar Kumar and R. R. Nidamanuri (2023). Influence of atmospheric correction models on the discrimination of crops using airborne hyperspectral imagery, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064534.

32.        A. S. Sarma and R. R. Nidamanuri (2023). Transfer learning for plant-level crop classification using drone-based hyperspectral imagery, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064501.

33.        J. Vijaywargiya and R. R. Nidamanuri (2023).  Crop phenology extraction using big geospatial datacube, IEEE Xplore pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064579.

34.        J. Chilakamarri, R. R. Nidamanuri and P. Murugan (2023). Multi-scenario target detection using neural networks on hyperspectral imagery, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064621.

35.        R. Chugh, R. R. Nidamanuri, U. R. Nelakuditi, M. Dileep and A. Davood (2023). Spectrally optimized feature identification (SOFI): a novel band selection method for hyperspectral image analysis IEEE Xplore, pp. 1-3, doi: 10.1109/MIGARS57353.2023.10064625.

36.        C. V. S. S. Manohar Kumar, S. S. Jha and R. R. Nidamanuri (2023). Target detection in airborne hyperspectral imagery and its sensitivity to different atmospheric correction methods, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064518.

37.        M. Kaushik, R. R. Nidamanuri, A. B and R. A. M (2023).  Spectral discrimination of vegetable crops using in situ hyperspectral data and reference to organic vegetables, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064553.

38.        L. James, R. R. Nidamanuri, S. Murali Krishnan, R. Anjaneyulu and C. Srinivas (2023). A novel approach for sar to optical image registration using deep learning, IEEE Xplore pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064578.

39.        S. Singhal, L. James, A. R. V. G, S. C. V, M. K. S and R. R. Nidamanuri (2023). Cloud detection from AWiFS imagery using deep learning, IEEE Xplore pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064610.

40.        J. Reji and R. R. Nidamanuri (2023). Deep learning-based fusion of LiDAR point cloud and multispectral imagery for crop classification sensitive to nitrogen level, IEEE Xplore pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064497.

41.        C. V. S. S. Manohar Kumar, R. R. Nidamanuri and V. K. Dadhwal (2023). Subpixel level discrimination of vegetable crops in a complex landscape environment, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064602.

42.        A. Gujrati, V.B. Jha, R.R. Nidamanuri, and R.P. Singh (2023). Satellite-based optical water type classification of inland waters bodies of India, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064493.

43.        V. K. Munipalle, U. R. Nelakuditi and R. R. Nidamanuri (2023). Agricultural crop hyperspectral image classification using transfer learning, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064595.

44.        P. Punya and R. Rao Nidamanuri (2023). Assessment of the long-term dynamics of algal blooms and their linkages with oceanographic parameters using time-series remote sensing data, IEEE Xplore, pp. 4016-4018, doi: 10.1109/IGARSS52108.2023.10283171.

45.        M. Kaushik, A. S. Sarma and R. Rao Nidamanuri (2023). CloudSegnet: A deep learning-based segmentation method for cloud detection in multispectral satellite imagery, IEEE Xplore, pp. 3827-3829, doi: 10.1109/IGARSS52108.2023.10282395.

46.        C. V. S. S. Manohar Kumar, M. S. Salini and R. R. Nidamanuri (2023). Abundance of plastic-litter in hyperspectral imagery using spectral unmixing in coastal environment, IEEE Xplore, pp. 6029-6032, doi: 10.1109/IGARSS52108.2023.10282684.

47.        A. S. Sarma and R. R. Nidamanuri (2023). Active learning-enhanced plant-level crop mapping with drone hyperspectral imaging and evolutionary computing, IEEE Xplore, pp. 1-5, doi: 10.1109/WHISPERS61460.2023.10430799.

48.        Sivaganesh, C. H, M. K. C. V. S. S., M. Kaushik, R. G. Sharathchandra and R. Rao Nidamanuri (2023). Hyperspectral detection of fusarium wilt in tomato plants using machine learning-based approaches, IEEE Xplore, pp. 7583-7585, doi: 10.1109/IGARSS52108.2023.10282890.

49.        Indu. K C, Manohar Kumar, C. V. S. S, Dhanya. S. Pankaj and R. R. Nidamanuri (2023). Automatic object-based plant-level crop segmentation in drone-based hyperspectral Imagery, IEEE Xplore,  pp. 1-3, doi: 10.1109/WHISPERS61460.2023.10431051.

50.        Nijitha. P, Manohar Kumar, C. V. S. S, Dhanya. S. Pankaj and R. R. Nidamanuri (2023). Solid waste detection and waste-material characterization in urban environment at subpixel level in airborne hyperspectral imagery, IEEE Xplore, pp. 1-3, doi: 10.1109/WHISPERS61460.2023.10430865.

51.        Aarsha. B. R, Manohar Kuamr, C. V. S. S, Dhanya. S. Pankaj and R. R. Nidamanuri (2023). Invasive plant species detection in airborne hyperspectral imagery over complex forest landscape, IEEE Xplore, pp. 1-3, doi: 10.1109/WHISPERS61460.2023.10431181.

52.        A. S. Sarma and R. Rao Nidamanuri (2023). Evolutionary optimisation techniques for band selection in drone-based hyperspectral images for vegetable crops mapping, IEEE Xplore, pp. 7384-7387, doi: 10.1109/IGARSS52108.2023.10282887.

53.        Manohar Kumar, C. V. S. S., R. R. Nidamanuri and V. K. Dadhwal (2023). Sub-pixel discrimination of soil and crop in drone-based hyperspectral imagery, IEEE Xplore, pp. 1-4, doi: 10.1109/WHISPERS61460.2023.10430777.

54.        Bisht, D.S., Rao, T.N., Nidamanuri, R.R., Chandrakanth, S.V. and Sharma, A. (2022). Prediction of integrated water vapor using a machine learning technique, IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5.

55.        Jha, S.S., Joshi, C. and Nidamanuri R.R. (2022). Target detection in hyperspectral imagery using atmospheric-spectral modelling and deep learning, IEEE Geoscience and Remote Sensing Letters, 19, 1-5.

56.        Nidamanuri, R.R., Reji, J, Ramiya, Astor, T., Wachendorf, M. and Buerkert, A. (2022). High-resolution multispectral imagery and LiDAR point cloud fusion for the discrimination and biophysical characterization of vegetable crops at different levels of nitrogen, Biosystems Engineering, 222, 177- 195.

57.        Dubacharla, G. and Nidamanuri, R.R. (2022). A real-time SC2S based open-set recognition in remote sensing imagery, Journal of Real-Time Image Processing, 19, 867 - 880.

58.        Dubacharla, G. and Nidamanuri, R.R. (2022). A real-time SC2S based open-set recognition in remote sensing imagery, Journal of Real-Time Image Processing, 19, 867 - 880.

59.        C.V.S.S. Manohar Kumar, Jha, S.S., Nidamanuri, R.R. and Dadhwal, V.K. (2022), Multi-resolution terrestrial hyperspectral dataset for spectral unmixing problems, Data in Brief, 43,108331

60.        Manohar, C.V.S.S., Jha, S.S., Nidamanuri R.R. and Dadhwal, V.K. (2022). Benchmark studies on pixel - level spectral unmixing of multi-resolution hyperspectral imagery, International Journal of Remote Sensing, 43, 1451 - 1484.

61.        Jha, S.S., Nidamanuri R.R., and Intellucci, E.J. (2022). Influence of atmospheric modeling on spectral target detection through forward modeling approach in multi-platform remote sensing data, ISPRS Journal of Photogrammetry and Remote Sensing, 183, 286 - 306.

62.        Vijaywargiya, J., Nidamanuri, R.R. (2022). Forest fire damage and recovery assessment of Bandipur forest, India. In: Mathur, G., Bundele, M., Lalwani, M., Paprzycki, M. (eds) Proceedings of 2nd International Conference on Artificial Intelligence: Advances and Applications. Algorithms for Intelligent Systems. Springer, Singapore.

63.        Reji, J, Nidamanuri, R.R., Ramiya (2021). Object-level classification of vegetable crops in 3D LiDAR point cloud using deep learning convolutional neural networks, Precision Agriculture, 22, 1617 - 1633.

64.        Reji, J, Nidamanuri, R.R., Ramiya, Astor, T., Wachendorf, M. and Buerkert, A. (2021). Multi-temporal estimation of vegetable crop biophysical parameters with varied nitrogen fertilization using terrestrial laser scanning, Computers and Electronics in Agriculture, 184, 106051.

65.        Indirabai, I., Nidamanuri, R.R., Nair, M. & Nair, J. (2021). Biophysical Characterization of Forests in Western Ghats of India by Integration of Space-Borne LiDAR and Multispectral Remote Sensing, Remote Sensing in Earth Systems Sciences. 1-16. 10.1007/s41976-021-00050-5.

66.        Nair, S., Pillutla, R.C. and Nidamanuri, R.R. (2021). Semi-Empirical Model for Upscaling Leaf Spectra (SEMULS): A novel approach for modeling canopy spectra from in situ leaf reflectance spectra, Geocarto International, 36, 1665 - 1684.

67.        Nautiyal, S., Goswami, M., Nidamanuri, R.R. (2020). Structure and composition of field margin vegetation in the rural-urban interface of Bengaluru, India: a case study on an unexplored dimension of agroecosystems. Environ Monit Assess 192, 520. https://doi.org/10.1007/s10661-020-08428-6

68.        Jha, S.S. and Nidamanuri R.R. (2020). Gudalur Spectral Target Detection (GST-D): A new benchmark dataset and engineered material target detection in multi-platform remote sensing data, Remote Sensing, 12(13), 2145. https://doi.org/10.3390/rs12132145

69.        Nidamanuri, R. R. (2020). Hyperspectral discrimination of tea plant varieties using machine learning and spectral matching methods, Remote Sensing Applications: Society and Environment, 19, pp.100350 https://doi.org/10.1016/j.rsase.2020.10035

70.        6Dubacharla, G. and Nidamanuri, R.R. (2020). A novel supervised cascaded classifier system (SC2S) for robust remote sensing image classification, IEEE Geoscience and Remote Sensing Letters, 18, 421 - 425.

71.        Jha S.S., Nidamanuri R.R. (2020). Dynamics of target detection using drone based hyperspectral imagery. In: Jain K., Khoshelham K., Zhu X., Tiwari A. (Eds). Lecture Notes in Civil Engineering, Vol 51. Springer, https://doi.org/10.1007/978-3-030-37393-1_10

72.        Indirabai, I., Nair, M.V.H, Nair, J.R. and Nidamanuri, R.R. (2020). Direct estimation of leaf area index of tropical forests using LiDAR point cloud, Remote Sensing Applications: Society and Environment, 18, 100295 https://doi.org/10.1016/j.rsase.2020.100295.

73.        Dubacharla, G. and Nidamanuri, R.R. (2020). A real-time FPGA accelerated stream processing for hyperspectral image classification, Geocarto International, https://doi.org/10.1080/10106049.2020.1713231

74.        Athira, K., Sooraj, N.P., Jaishanker, R., Saroj Kumar, V., Sajeev, C.R., Pillai, M.S., Govind, A., Ramarao, N., Dadhwal, V.K. (2019). Chromatic exclusivity hypothesis and the physical basis of floral color, Ecological Informatics, 49: 40 – 44.

75.        Indirabai, I., Nair, M.V.H, Nair, J.R. and Nidamanuri, R.R. (2019).  Terrestrial laser scanner based 3d reconstruction of trees and retrieval of leaf area index in a forest environment, Ecological Informatics, 53, 100986.

76.        Indirabai, I., Nair, M.V.H, Nair, J.R. and Nidamanuri, R.R. (2019).  Estimation of forest structural attributes using ICESat/GLAS-spaceborne laser altimetry data in the Western Ghats Region of India, Journal of Geovisualization and Spatial Analysis (2019) 3:10, https://doi.org /10.1007/s41651-019-0033-2

77.        Rajeswari B., Srivalsan N., Nidamanuri R.R., and Gorthi RKSS (2018), Active learning-based optimized training library generation for object-oriented image classification, IEEE Transactions on Geoscience and Remote Sensing, 56, 575 - 585.

78.        Ramiya A.M., Nidamanuri, R.R. and Krishnan, R. (2019), Assessment of various parameters on 3D semantic object-based point cloud labelling on urban LiDAR dataset, Geocarto International, 34, 817-838.

79.        Thomas Moeckel, Supriya Dayananda, Rama Rao Nidamanuri, Sunil Nautiyal, Nagaraju Hanumaiah , Andreas Buerkert, and Michael Wachendorf (2018). Estimation of Vegetable Crop Parameter by Multi-temporal UAV-Borne Images, Remote Sens. 2018, 10, 805.

80.        Rajeswari B., Srivalsan N., Nidamanuri R.R., and Gorthi RKSS (2018), Batch-mode active learning-based superpixel library generation for very high-resolution aerial image classification. In: Verma, N.K. and Ghosh, A.K. (Eds), Computational Intelligence: Theories, Applications and Future Directions - Volume II (Advances in Intelligent Systems and Computing book series (AISC, volume 799), 307-318. https://doi.org/10.1007/978-981-13-1135-2_24

81.        Madalasa, P. Gorthi R.K.S.S, Martha,T.R., Nidamanuri, R.R. and Mishra, D. (2018). Bayesian approach for landslide identification from high-resolution satellite images. In: Chaudhuri, B.B., Kankanhalli, M.S. & Raman, B (Eds), Advances in Intelligent Systems and Computing 704, https://doi.org/10.1007/978-981-10-7898-9_2

82.        Rajeswari B., Gorthi RKSS and Nidamanuri R.R. (2018). Learning-based fuzzy fusion of multiple classifiers for object-oriented classification of high-resolution images. In: Chaudhuri, B.B., Kankanhalli, M.S. and Raman, B (Eds) Advances in Intelligent Systems and Computing book series (AISC, volume 703), 63 – 78. https://doi.org/10.1007/978-981-10-7895-8

83.        Jha S.S., Manohar, C.V.S.S. and Nidamanuri, R.R. (2019). Flexible atmospheric compensation technique (FACT): a 6S based atmospheric correction scheme for remote sensing data, Geocarto International, https://doi.org/10.1080/10106049.2019.1588391

84.        Ramiya A.M., Nidamanuri, R.R. and Krishnan, R. (2019) "Individual tree detection from airborne laser scanning data based on supervoxels and local convexity". Remote Sensing Applications: Society and Environment, 15, 100242

85.        Supriya Dayananda, Thomas Astor, Jayan Wijesingha, Subbarayappa Chickadibburahalli Thimappa, Hanumanthappa Dimba Chowdappa, Mudalagiriyappa, Rama Rao Nidamanuri, Sunil Nautiyal and Michael Wachendorf (2019). Multi-temporal monsoon crop biomass estimation using hyperspectral imaging, Remote Sensing, 11(15), 1771.

86.        Ramiya A.M., Nidamanuri, R.R. and Krishnan, R. (2016). Super-voxels based spatial-spectral approach for 3D object based urban point cloud labelling, International Journal of Remote Sensing, 37, 1- 16.

87.        Ramiya A.M., Nidamanuri, R.R. and Krishnan, R. (2017). Segmentation based building detection approach from LiDAR point cloud, The Egyptian Journal of Remote Sensing and Space Science, 20, 71 – 77.

88.        Nidamanuri, R.R. (2016). Multiple spectral similarity metrics for surface materials identification using hyperspectral data, Geocarto International, 31, 845 – 859.

89.        Dhanya S Pankaj and Nidamanuri R.R. (2016). A robust estimation technique for 3D point cloud registration, Image Analysis and Stereology 35, 15- 28.

90.        Ramiya A.M., Nidamanuri, R.R. and Krishnan, R. (2016). Object-oriented semantic labelling of spectral–spatial LiDAR point cloud for urban land cover classification and buildings detection, Geocarto International, 31, 121 – 139.

91.        Kadapala B.R., Ahamed, J. Hebbar, R. Raj, U. and Nidamanuri R.R. (2016). Object based classification techniques for citrus orchards, Journal of Geomatics, 10, 65 – 70

92.        Christian, A., Joshi, N., Saini, M., Mehta, N.K, Goroshi, S., Nidamanuri R.R., Thenkabail, P., Desai, A.R., Nadiminti, K. (2015). Seasonal variations in GPP of a tropical deciduous forest from MODIS and Hyperion, Agricultural and Forest Meteorology, 214-215, 91-105.

93.        Damodaran, B.B., and Nidamanuri R.R., and Tarabalka, Y. (2015). Dynamic ensemble selection approach for hyperspectral image classification with joint spectral and spatial information, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 2405 – 2417.

94.        Venkatesh. S.S, Anil Kumar. A.K, Deepak Mishra, Nidamanuri R.R and Karthikesan. D (2015). Three-dimensional motion parameter estimation from consecutive perspective views of rigid planar patch: algorithm based on pure parameters and singular value decomposition and implementation, International Journal of Applied Engineering Research, 10(8), 6122 – 6128.

95.        Nidamanuri R.R and Damodaran, B.B. (2014): Dynamic linear classifier system for hyperspectral image classification for land cover mapping, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2080 – 2093.

96.        Damodaran, B.B., and Nidamanuri R.R (2014): Assessment of the impact of dimensionality reduction methods on information classes and classifiers for hyperspectral image classification by multiple classifier system. Advances in Space Research, 53, 1720–1734.

97.        Ramiya, A. M., Nidamanuri R.R., and Krishnan, R. (2014). Semantic labelling of urban point cloud data, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-8, 907-911, doi:10.5194/isprsarchives-XL-8-907-2014.

98.        Nidamanuri R.R and Ramiya, A.M. (2014), Spectral identification of materials by reflectance library search, Geocarto International, 29, 609-624.

99.        Sennaraj V., Nidamanuri R.R and Bremananth, R. (2012): Spectral material mapping using hyperspectral imagery: a review of spectral matching and library search methods, Geocarto International, 28, 171 –

100.     Nidamanuri R.R. and Zbell, B. (2013), Understanding the unique spectral signature of winter rape, Journal of the Indian Society of Remote Sensing, 41, 57 – 70.

101.     Nautiyal, S. and Nidamanuri R.R (2012), Ecological and socioeconomic impacts of conservation policies in biodiversity hotspots: a case study from Rajiv Gandhi National Park, India, Journal of Environmental Studies and Sciences, 2, 165 – 177.

102.     Nautiyal, S. and Nidamanuri R.R. (2012). Protected area management in biodiversity hotsopts: a case study from Nagarahole National Park, India in Land Management in Marginal Mountain Regions: Adaptation and Vulnerability to Global Change, Saxena, et al (Eds), Published by United Nations University, Japan.

103.     Nidamanuri R.R and Zbell, B. (2011). Existence of characteristic spectral signatures for agricultural crops – potential for automated crop mapping by hyperspectral imaging, Geocarto International, 26, 524 - 533.

104.     Nidamanuri R.R and Zbell, B. (2011). A spectral matching quality indicator for material mapping using spectral library search methods, International Journal of Remote Sensing, 32, 7151 - 7162.

105.     Nidamanuri R.R. and Zbell, B. (2011). Transferring spectral libraries of canopy reflectances for crop classification using hyperspectral remote sensing data, Biosystems Engineering, 110, 231-246.

106.     Nidamanuri R.R and Zbell, B. (2011). Use of field reflectance data for crop mapping using airborne hyperspectral image, ISPRS Journal of Photogrammetry and Remote Sensing, 66, 683 - 691.

107.     Nidamanuri R.R and Zbell, B. (2011). Normalized Spectral Similarity Score (NS3) as an efficient spectral library searching method for hyperspectral image classification, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4, 226 - 240.

108.     Nautiyal, S. and Nidamanuri R.R. (2010). Conserving biodiversity in protected area of biodiversity hotspot in India: a case study, International Journal of Ecology and Environmental Sciences, 36, 195 - 200.

109.     Nidamanuri R.R. and Zbell, B. (2010).  A method for selecting optimal spectral resolution and comparison metric for material mapping by spectral library search, Progress in Physical Geography, 34, 47 - 58.

110.     Rao, N.R., Garg, P.K, and Ghosh, S.K. (2006). Estimation and comparison of leaf area index of agricultural crops using IRS LISS-III and EO-1 Hyperion images, Journal of the Indian Society of Remote Sensing, 34, 69-78.

111.     Rao, N.R., Garg, P.K, and Ghosh, S.K. (2006). Evaluation of radiometric resolution on the estimation of leaf area index of agricultural crops, GIScience & Remote Sensing. 43, 1-11.

112.     Rao, N.R., Garg, P.K, and Ghosh, S.K. (2007). Evaluation of radiometric resolution on land use/land cover mapping in an agricultural area, International Journal of Remote Sensing, 28, 443-450.

113.     Rao, N.R., Garg, P.K, and Ghosh, S.K. (2007). Estimation of plant chlorophyll and nitrogen concentration of agricultural crops using EO-1 Hyperion hyperspectral imagery, Journal of Agricultural Science, 146, 1-11.

114.     Rao, N.R., Ghosh, S.K. and Garg P.K. (2007). Development of cultivar based crop spectral library and classification of crop cultivars using hyperspectral data, Precision Agriculture, 8, 173-185.

115.     Rao, N.R., Sharma, N., Kapoor, M. and Venkateswarlu, K. (2007). Yield prediction and waterlogging assessment for tea plantation land using satellite image based techniques. International Journal of Remote Sensing, 28, 1561 - 1576.

116.     Rao, N.R. and Saravanan, S. (2007). Remote sensing-based estimation of agricultural crops damage due to Asian tsunami-A case study in part of Nagapattinam, India, International Journal of Applied Remote Sensing, 2, 51 - 632.

117.     Rao, N.R., Garg, P.K, and Ghosh, S.K. (2007). Remote sensing based estimation of cotton canopy cover using linear mixture modelling approach, International Journal of Applied Remote Sensing, 1, 63- 71.

118.     Rao, N.R., Garg, P.K, and Ghosh, S.K. (2007). Potential use of hyperspectral imagery to eliminate saturation effect of NDVI at high canopy density of vegetation, International Journal of Applied Remote Sensing, 1, 10- 21.

119.     Rao, N.R. (2009). Conformity analysis of cotton crop using remote sensing and GIS, Geospatial World Magazine (09/01/2009).

 


 

Academic conferences/symposia


Recent

 

1.   K. V. Greeshma, A. S. Sarma and R. R. Nidamanuri (2024). Forward Spectral Mixture Modelling for Mineral Mapping Applications, IEEE Xplore, 10.1109/InGARSS61818.2024.10984204

2. J. K. Thomas, D. S. Pankaj, H. Chandra and R. R. Nidamanuri (2024). Classification of Crops at Different Nitrogen Levels Using Drone-Based Hyperspectral Imaging: A Machine Learning Approach, IEEE Xplore, 0.1109/InGARSS61818.2024.10984076.

3. A. Gujrati, S. Chander, R. R. Nidamanuri, R. P. Singh and P. K. Gupta (2024). Towards operational retrieval of chlorophyll-a in inland waters using optical water types, IEEE Xplore,  10.1109/InGARSS61818.2024.10984300.



         Past 

1.         Kumar, Abhijeet; T. N., Rao; Nidamanuri, R. R, ‘Retrieval of microphysical parameters of precipitation using X-band dual-polarization radar (DROP-X)’, ‘IEEE – GRSS Young Research Conclave, Thiruvananthapuram, India (18/12/2020 – 20/12/2020).

2.         Kumar, Abhijeet; T. N., Rao; Nidamanuri, R. R, ‘Microphysical Processes in Embedded Convective Cells in Land falling Tropical Cyclone NIVAR using X-band dual polarization radar’, 11th European Radar in meteorology and Hydrology Conference (ERAD-2022), Locarno, Switzerland. (29/08/2022 – 02/09/2022)

3.         Kumar, Abhijeet; T. N., Rao; Nidamanuri, R. R, ‘Raindrop size distribution characteristics of the Inner core, Inner rain band, and Outer rain band of Tropical Cyclone over a Tropical station - Gadanki’, European Meteorological Satellite Conference (EUMETSAT), Malmo, Sweden, 2023. (11/09/2023 – 15/09/2023).

4.         Kumar, Abhijeet; T. N., Rao; Nidamanuri, R. R, ‘Microphysical characteristics of extreme rainfall over tropical station as revealed by X-band dual-polarization radar’, India Radar Meteorology (i-RAD) Conference, Indore, India. (10/01/2024 – 12/01/2024).

5.         Kumar, Abhijeet; T. N., Rao; Nidamanuri, R. R, ‘Unravelling the microphysical characteristics of extreme rainfall over tropical stations using X-band dual-polarization radar observation’, 12th European Radar in Meteorology and Hydrology Conference (ERAD-2024), Rome, Italy, (09/09/2024 – 13/09/2024) (online).

6.         Pooja, K., Nidamanuri, R.R., and Mishra, D. (2019). Multi-scale dilated residual convolutional neural network for hyperspectral image classification. 10th Workshop on Hyperspectral Imaging and Signal Processing, (WHISPERS), 1-5.

7.         Joseph, J., Mishra, D., Martha, T.R. and Nidamanuri, R.R. (2018). A deep learning framework for automatic landslide inventory mapping (DLF-ALM), INCA38: 38th INCA International Congress- Emerging Technologies in Cartography, Hyderabad, India

8.         Ramiya, A. M., Nidamanuri, R.R. and Krishnan, R. (2014). Semantic labelling of urban LiDAR point cloud data. Proceedings of ISPRS TC VIII Mid-Term Symposium, Hyderabad.

9.         Rajeswari B., Srivalsan N., Nidamanuri R.R., and Gorthi RKSS (2017). Batch mode active learning based superpixel library generation for very high-resolution aerial image classification, International Conference on Computational Intelligence: Theories, Applications and Future Directions, Dec. 2017, IIT Kanpur, India.

10.      Rajeswari B., Srivalsan N., Nidamanuri R.R., and Gorthi RKSS (2017). Learning based fuzzy fusion of multiple classifiers for object oriented classification of high resolution images, International Conference on Computer Vision and Image Processing, Sept. 2017, IIT Roorkee, India.

11.      Veena, V.S., Mishra, D., Martha, T.R. and Nidamanuri, R.R. (2016). Automatic detection of landslides in object-based environment using open source tools, GEOBIA 2016, GEOBIA 2016: Solutions and Synergies, 14–16 September 2016, Enschede, The Netherlands.

12.      Indirabai, I. and Nidamanuri, R.R. (2016). Three dimensional urban building detection using LiDAR data using point cloud library and visual studio C++, Proceedings of the Imaging & Geospatial Technology Forum (IGTF) 2016 American Society for Photogrammetry & Remote Sensing (ASPRS) Conference and Co-Located JACIE Workshop, 11-15 April 2016, Fort Worth, USA.

13.      Pankaj, D.S and Nidamanuri, R.R. (2016). Robust multi-view registration of point clouds. International Conference on Communication Systems and Networks, (ComNet 2016), 21-23 July, 2016, Ahmedabad, India

14.      Pankaj, D.S and Nidamanuri, R.R. (2016). ProLoSAC: An Improved RANSAC algorithm for pairwise registration of 3d point clouds. Indian Conference on Computer Vision Graphics and Image Processing, Dec. 2014, Bangalore.

15.      Nidamanuri, R.R. (2014). Spectral discrimination of tea plant varieties by statistical, machine learning and spectral similarity methods, 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 24-27 June 2014, Switzerland.

16.      Dhanya S Pankaj, Nidamanuri, R.R. and P Bhanu Prasad (2013). 3-D imaging techniques and review of products, Proceedings of the “International Conference on Innovations in Computer Science and Engineering”, Hyderabad.

17.      Bhusan, D. B.and Nidamanuri, R.R. (2013). Dynamic classifier system for hyperspectral image classification, IGARSS 2013, Melbourne.

18.      Bhusan, D. B.and Nidamanuri, R.R. (2012). Assessment of relationship between information classes, classifiers and dimensionality reduction methods for hyperspectral image classification by multiple classifier system, National Symposium on ‘Space Technology for Food & Environmental Security’ &Annual Convention of Indian Society of Remote Sensing, Dec. 5 -7, 2012, New Delhi.

19.      Vishnu S., Nidamanuri , R.R. and Bremananth, R. (2012). Normalized spectral matching score (NSMS): an improved method for hyperspectral image classification, National Symposium on ‘Space Technology for Food & Environmental Security & Annual Convention of Indian Society of Remote Sensing’, Dec. 5 -7, 2012, New Delhi.

20.      Bhusan, D. B.and Nidamanuri, R.R. (2012). Impact of feature reduction methods on target detection methods for hyperspectral image classification by multiple classifier system, presented in “39th COSPAR Scientific Assembly”, 14 – 22 July, 2012, Mysore.

21.      Nidamanuri, R.R. and Saquib, Q. (2011). Integration of LIDAR and hyperspectral data for object based image classification, presented in "National Symposium on ‘Empowering Rural India through Space Technology" organized Indian Society of Remote Sensing, November 8 -11, 2011, Bhopal.

22.      Nidamanuri, R.R. and Ramiya, A.M. (2011). Estimation of tropical forest biophysical parameters using near UV and NIR reflectance from GOSAT TANSO – CAI sensor, presented in "International Conference on "Adaptive Management of Ecosystems: The Knowledge Systems of Societies for Adaptation and Mitigation of Impacts of Climate Change" 19-21, October 2011, Bangalore.

23.      Nidamanuri, R.R. and Zbell B. (2009). On the transferability of vegetation spectral library, presented in 33rd International Symposium on Remote Sensing of Environment, May 3 - 7, 2009, Stresa, Italy.

24.      Rao, N.R. and Alex, S.H, (2007). A Spectral library approach for the identification of diseased mango trees, presented at International Symposium: "Application of Precision Agriculture for Fruits and Vegetables", held during January 6-9, 2008 at Orlando, Florida, USA.

25.      Rao, N.R., Garg, P.K, and Ghosh, S.K. (2006). Development of variety based crops spectral library and discrimination of various crop species using hyperspectral remote sensing data, in proceedings of the International Conference on Geoinformatics-2006, held at Hyderabad during 2-5, June 2006.

26.      Rao, N.R., Garg, P.K, and Ghosh, S.K. (2006). Evaluation of the impact of radiometric resolution on land use/land cover classification, in Proceedings of the Indo-Australian Conference on IT in Civil Engineering, held at Indian institute of Technology, Roorkee, India during 19-21 Feb, 2006.

27.      Rao, N.R. and Ghosh, S.K., Rao, N.V. (2005). Land use/land cover classification with multispectral and hyperspectral EO-1 data: A comparison, presented in 31st International Symposium on Remote Sensing of Environment, held on June 20 - 24, 2005, St. Petersburg, Russia.

28.      Rao, N.R. and Venkateswarlu, K. (2005). Remote sensing-based estimation of agricultural crops damage due to Asian Tsunami, presented in National Seminar on GIS Applications in Rural Development with Focus on Disaster Management, held on 9-10, Mar 2005, National Institute of Rural Development, Hyderabad, India.

29.      Rao, N.R., Garg, P.K, and Ghosh, S.K. (2004). Estimation of leaf area index of agricultural crops using remote sensing data, presented in International Conference on Geoinformatics-2004, held on December 12-14, 2004, University of Mysore, Mysore, India.

30.      Rao, N.R., Garg P.K., and Jagadish M.V. (2003). Conformity analysis of cotton crop using remote sensing and GIS techniques, presented in 30th International Symposium on Remote Sensing of Environment, November 10 - 14, 2003, Honolulu, Hawaii, U.S.A.

 

 

 

 

Email: 
1466
Staff Code: 
IN10082