Sorry, you need to enable JavaScript to visit this website.

  • 4:48 PM, Sunday, 27 Jul 2025

Department of Earth and Space Sciences
     
Rama Rao Nidamanuri, Ph.D.
Professor
 
Office
Tel:+91-471-2568519 (Direct)
Fax:+91-471-2568462
Email:[email protected]













Education

  •      Ph.D from Indian Institute of Technology, Roorkee, on a topic in hyperspectral remote sensing image processing, in 2006.
  •      M.Tech in Remote Sensing from Birla Institute of Technology, Mesra, Ranchi in 2001.
  •      M.Sc in Space Physics from Andhra University, Visakhapatnam, India in 1998.
  •      B.Sc (Mathematics, Physics, Computer Science)  from Nagarjuna University, Guntur, India in 1996.            

       Research Fellow of the Alexander Humboldt Foundation, Germany


Course Offered

Full-semester courses (Masters level): principles of remote sensing, remote sensing applications in atmospheric and ocean studies, pattern recognition,

LiDAR remote sensing, satellite-based geophysical parameters retrieval, mathematical methods for geospatial analysis, hyperspectral image processing and analysis,

microwave remote sensing, quantative methods in remote sensing.


Experience
    • Professor & Head, Department of Earth and Space Sciences, Indian Institute of Space Science and Technology, Government of India, Trivandrum, India  (Jan 2021 - December 2024)

    • Professor (Remote Sensing & GIS), Department of Earth and Space Sciences, Indian Institute of Space Science and Technology, Government of India, Trivandrum, India  (Jan 2021 -)

    • Associate Professor (Remote Sensing & GIS), Department of Earth and Space Sciences, Indian Institute of Space Science and Technology, Government of India, Trivandrum, India  (July, 2014 - Dec. 2020)

    •  Visiting Professor, Faculty of Agriculture, University of Kassel, Germany (June – August, 2017), Sponsorship: Alexander von Humboldt Foundation, Germany

    •  Visiting Professor, Faculty of Agriculture, University of Kassel, Germany (May – August, 2014), Sponsorship: Alexander von Humboldt Foundation, Germany

    •  Assistant Professor, Earth and Space Sciences, Indian Institute of Space Science and Technology, Department of Space, Government of India, Trivandrum, India  (February 2010 –July 2014)

    •  Visiting Professor, Earth and Space Sciences, Indian Institute of Space Science and Technology, Government of India, Trivandrum, India  (November  2009 2010)

    • Alexander von Humboldt Foundation Post-Doctoral Research Fellow: Institute for Landscape Systems Analysis, Leibniz-Center for Agricultural Landscape Research, Muencheberg, Germany (March, 2008-January, 2010).

    •  Endeavour Research Post-Doctoral Research Fellow, Department of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Australia (June, 2007 – December, 2007)

    •  Project Leader, GIS Division, RMSI Pvt. Ltd., Noida, India (November 2006 –May 2007)

    •  Research Fellow, Agriculture and Soils Division, National Remote Sensing Center, Hyderabad, India (January, 2002 - December, 2002)

    • Lecturer in Physics, SPACES Degree College, Andhra University, India (June, 1998 – July, 2000)



Research Work / Area

Focusing on methods, algorithms, and framework perspectives, my research group has interests in the processing, modelling and analyses of remote sensing data for various applications, such as: 

  • atmosphere (atmospheric correction modelling of satellite data, air quality, estimation of atmospheric parameters, etc.), 
  • agriculture (crops and orchards; crop type mapping, biotic and abiotic stress detection and monitoring, yield estimation, etc.),
  • forestry (spatio-temporal biophysical characterization, disturbance, fragmentation, forest fires, etc),
  • fresh water resources (lakes, reservoirs, rivers), 
  • ocean (colour/algal blooms, water quality, inter-sensor validation/calibration).
  • urban (3D building modelling, urban infrastructure, urban tree detection and modelling),

In addition to developing new algorithms and approaches for improving analysis/autmatic image analysis perspectives, we adapt and apply a host of machine learning and deep machine learning approaches.

We use a host of remote sensing data, such as temporal high-solution multi-spectral imagery and hyperspectral imagery (ground, drone, airborne and space-borne imaging sensors)
  • 3D laser scanning (terrestrial and airborne) and meteorological, soil, and geological data.
  • We have also been working on the development of GPU/FPGA-based algorithms/modules for real-time/near-real-time processing and analyses of hyperspectral images acquired from ground and drone-based hyperspectral imaging systems.
 
  • We undertake extensive field visits for ground truth measurements in various landscapes and believe that remote sensing works cannot stand a chance without relating to field conditions and calibrations.

 

Scene and Sensor Modelling: 

Radiative transfer theory-based scene and sensor simulation has a lot of applications, both in civilian and strategic domains. Building upon our studies and developments on atmospheric correction models for various types of multispectral and hyperspectral sensors, we have initiated a long-term perspective plan and multi-application centre for modelling and simulation of a host of remote sensing imagery for various applications.

 

Peer Reviewed Journal Articles

 Recent Articles


 1. Singh, U..,, Nidamanuri, R.R..,, (20250. Disaggregating IMERG satellite precipitation over Czech Republic: an innovative approach using hybrid extreme gradient boosting based on fuzzy spatial-temporal multivariate clustering, Journal of Big Data.

  2.   Chandra, H. and Nidamanuri, R.R. (2025). Dynamic spectral similarity method (DSSM): A novel method for automated identification of objects in hyperspectral imagery, IEEE Geoscience and Remote Sensing Letters, 22, 0.1109/LGRS.2025.3564386.

  3.   James, L., Nidamanuri, R.R. and Murali, K.S. GSR-SWIR: SWIR band for Resourcesat LISS-4 from LISS-3 using guided super-resolution, Remote Sensing Letters.

  4.    Gujarati, A., Nidamanuri, R.R., Singh, R.P. and Jha, V.B.Dynamics and Drivers of Changing Color of Lakes of India, Modelling Earth Systems and Environment, 11, 330. 10.1007/s40808-025-02526-5

  5.    Reji, J. and Nidamanuri, R.R. (2025). Deep learning-based multi-sensor approach for precision agricultural crop classification based on nitrogen levels, IEEE Geoscience and Remote Sensing Letters, 22, 10.1109/LGRS.2025.3556122.

  6.     Bahadur, F.T., Shah, S.R. and Nidamanuri, R.R. Land use land cover dynamics and its effect on air quality across north India using geo-spatial datasets, Environmental Quality Management

  7.     Kaushik, M., Nidamanuri, R.R., and Aparna, B. (2025). Hyperspectral discrimination of vegetable crops grown under organic and conventional cultivation practices: a machine learning approach, Nature Scientific Reports, 15, 7897.

  8.     Munipalle, V.K., Nelakuditi, U.R. and Nidamanuri, R.R. (2025). Distilling spectral-spatial knowledge for efficient hyperspectral image classification, Signal, Image and Video Processing.

  9.     Sarma, A.S. and Nidamanuri, R.R. (2025). Optimal band selection and transfer in drone-based hyperspectral images for plant-level vegetable crops identification using statistical-swarm intelligence (SSI) hybrid   algorithms, Ecological Informatics, 86, 103051.

 10.     Munipalle, V.K., Nelakuditi, U.R. and Nidamanuri, R.R. (2025). Functional dynamics of the knowledge transfer and pre-training in deep learning approaches for hyperspectral image classification, Journal of the Indian Society of Remote Sensing, https://doi.org/10.1007/s12524-025-02162-7.   

 

 

Past Articles                                                                        

       

11.        Sarma, A.S. and Nidamanuri, R.R. (2025). Nature-based metaheuristic optimisation techniques for band selection in drone-based hyperspectral images for plant-level crop classification, Stochastic Environmental Research and Risk Assessment, https://doi.org/10.1007/s00477-024-02884-z 

12.        Bahadur, F.T., Shah, S.R. and Nidamanuri, R.R. (2025). A brief outline of indoor air quality, its monitoring, its modelling, and its impacts, Journal of Environmental Engineering, 151(5),https://doi.org/10.1061/JOEEDU.EEENG-7929.

13.        Sivaganesh B., Chaitra H., Nidamanuri, R.R., Sharathchandra, R.G. and Narayanan, P. (2025). Hyperspectral detection and differentiation of various levels of Fusarium wilt in tomato crop using machine learning and statistical approaches, Journal of Crop health, 77, 42. https://doi.org/10.1007/s10343-024-01100-w

14.        Manohar, C.V.S.S., Jha, S.S., Nidamanuri R.R. and Dadhwal, V.K. (2024), Precision crop mapping: within plant canopy discrimination of crop and soil using multi-sensor hyperspectral imagery, Nature Scientific Reports, 22;14(1): 24903. doi: 10.1038/s41598-024-75394-1.

15.        Harsha Chandra and Nidamanuri R.R. (2024). Object-based spectral library for knowledge-transfer-based crop detection in drone-based hyperspectral imagery, Precision Agriculture, 26, 6 (2025). https://doi.org/10.1007/s11119-024-10203-3

16.        Punya P. and Nidamanuri R.R. (2024). Analysis of long-term changes in algal bloom pattern and their association with ocean, atmosphere, and land-based processes across the northern Indian Ocean, Advances in Space Research, 74, 1103-1119, https://doi.org/10.1016/j.asr.2024.04.040.

17.        Kumar, A., Rao, T.N., Nidamanuri, R.R. and Radhakrishna, B. (2024). Unraveling the microphysical processes in convective cells during the passage of Nivar cyclone using X-band dual-polarization radar, Atmospheric Research, 309, 107593, https://doi.org/10.1016/j.atmosres.2024.107593

18.        Bisht, D.S., Rao, T.N., Nidamanuri, R.R., Chandrakanth, S.V. (2024). Nowcasting of storms using predicted integrated water vapor with a machine learning technique and satellite brightness temperature, IEEE Transactions on Geoscience and Remote Sensing, pp. 1-8, 2024, doi: 10.1109/TGRS.2024.3429525.

19.        ReJi, J. and Nidamanuri, R.R. (2024). Deep learning-based prediction of plant height and crown area of vegetable crops using LiDAR point cloud, Nature Scientific Reports, 14, 14903. https://doi.org/10.1038/s41598-024-65322-8.

20.        Munipalle, V.K., Nelakuditi, U.R., Manohar Kumar, CVSS and Nidamanuri, R.R (2024). Ultra-high-resolution hyperspectral imagery datasets for precision agriculture applications, Data in Brief, 55, 110649, https://doi.org/10.1016/j.dib.2024.110649.

21.        Rodda, S.R., Fararoda, R., Gopalakrishnan, R., Nidamanuri, R.R. et al. (2024). LiDAR-based reference aboveground biomass maps for tropical forests of South Asia and Central Africa. Nature Scientific Data, 11, 334. https://doi.org/10.1038/s41597-024-03162-X

22.        Bahadur, F.T., Shah, S.R. & Nidamanuri, R.R. (2023). Applications of remote sensing vis-à-vis machine learning in air quality monitoring and modelling: a review, Environmental Monitoring and Assessment 195, 1502. https://doi.org/10.1007/s10661-023-12001-2

23.        Bahadur, F.T., Shah, S.R. & Nidamanuri, R.R. (2023). Air pollution monitoring, and modelling: an overview, Environmental Forensics, DOI: 10.1080/15275922.2023.2297437

24.        Rajesh, C.B, Manohar Kumar, C.V.S.S., Jha, S.S., Ramachandran, K.I. and Nidamanuri, R.R. (2023). In-situ and airborne hyperspectral data for detecting agricultural activities in a dense forest landscape, Data in Brief, 50, 109510, https://doi.org/10.1016/j.dib.2023.109510.

25.        Ujjwal, S. Petr M., Martin, H., Yannis, M., R.R. Nidamanuri, Sadaf, N., Johanna, R.B., Filip, S., Jirl, V., Lubomir, R. and Akhilesh, S. R. (2023).  Hybrid multi-model ensemble learning for reconstructing the gridded runoff of Europe for 500 years, Information Fusion, 97, 101807, https://doi.org/10.1016/j.inffus.2023.101807.

26.        Dubacharla, G. and Nidamanuri, R.R. (2023). Shadow and illumination invariant classification for high-resolution images, Digital Signal Processing, 136, 104007. https://doi.org/10.1016/j.dsp.2023.104007

27.        Rodda, S.R., Nidamanuri, R.R., Fararoda, R., Mayamanikandan, T., Rajashekar (2023).  Evaluation of height metrics and above-ground biomass density from GEDI and ICESat-2 over Indian tropical dry forests using Airborne LiDAR data, Journal of the Indian Society of Remote Sensing  https://doi.org/10.1007/s12524-023-01693-1

28.        Rodda, S.R., Nidamanuri, R.R., Mayamanikandan, T., Rajashekar, G., Jha, C.S. and Dadhwal, V.K. (2023). Non-destructive allometric modelling for Tropical dry deciduous forests of India using Terrestrial Laser Scanner, Journal of the Indian Society of Remote Sensing, https://doi.org/10.1007/s12524-022-01664-y

29.        Kumar, A., Rao, T.N., Nidamanuri, R.R. and Jyothi, K.A. (2023). Retrieval of microphysical parameters of monsoonal rain using X-band dual-polarization radar: their seasonal dependence and evaluation, Atmospheric Measurement Techniques, https://doi.org/10.5194/amt-2022-291

30.        D. S. Pankaj and R. R. Nidamanuri (2023).  A robust estimation method for automatic registration of remote sensing imagery, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064601.

31.        F. T. Jose, C. V. S. S. Manohar Kumar and R. R. Nidamanuri (2023). Influence of atmospheric correction models on the discrimination of crops using airborne hyperspectral imagery, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064534.

32.        A. S. Sarma and R. R. Nidamanuri (2023). Transfer learning for plant-level crop classification using drone-based hyperspectral imagery, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064501.

33.        J. Vijaywargiya and R. R. Nidamanuri (2023).  Crop phenology extraction using big geospatial datacube, IEEE Xplore pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064579.

34.        J. Chilakamarri, R. R. Nidamanuri and P. Murugan (2023). Multi-scenario target detection using neural networks on hyperspectral imagery, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064621.

35.        R. Chugh, R. R. Nidamanuri, U. R. Nelakuditi, M. Dileep and A. Davood (2023). Spectrally optimized feature identification (SOFI): a novel band selection method for hyperspectral image analysis IEEE Xplore, pp. 1-3, doi: 10.1109/MIGARS57353.2023.10064625.

36.        C. V. S. S. Manohar Kumar, S. S. Jha and R. R. Nidamanuri (2023). Target detection in airborne hyperspectral imagery and its sensitivity to different atmospheric correction methods, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064518.

37.        M. Kaushik, R. R. Nidamanuri, A. B and R. A. M (2023).  Spectral discrimination of vegetable crops using in situ hyperspectral data and reference to organic vegetables, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064553.

38.        L. James, R. R. Nidamanuri, S. Murali Krishnan, R. Anjaneyulu and C. Srinivas (2023). A novel approach for sar to optical image registration using deep learning, IEEE Xplore pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064578.

39.        S. Singhal, L. James, A. R. V. G, S. C. V, M. K. S and R. R. Nidamanuri (2023). Cloud detection from AWiFS imagery using deep learning, IEEE Xplore pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064610.

40.        J. Reji and R. R. Nidamanuri (2023). Deep learning-based fusion of LiDAR point cloud and multispectral imagery for crop classification sensitive to nitrogen level, IEEE Xplore pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064497.

41.        C. V. S. S. Manohar Kumar, R. R. Nidamanuri and V. K. Dadhwal (2023). Subpixel level discrimination of vegetable crops in a complex landscape environment, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064602.

42.        A. Gujrati, V.B. Jha, R.R. Nidamanuri, and R.P. Singh (2023). Satellite-based optical water type classification of inland waters bodies of India, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064493.

43.        V. K. Munipalle, U. R. Nelakuditi and R. R. Nidamanuri (2023). Agricultural crop hyperspectral image classification using transfer learning, IEEE Xplore, pp. 1-4, doi: 10.1109/MIGARS57353.2023.10064595.

44.        P. Punya and R. Rao Nidamanuri (2023). Assessment of the long-term dynamics of algal blooms and their linkages with oceanographic parameters using time-series remote sensing data, IEEE Xplore, pp. 4016-4018, doi: 10.1109/IGARSS52108.2023.10283171.

45.        M. Kaushik, A. S. Sarma and R. Rao Nidamanuri (2023). CloudSegnet: A deep learning-based segmentation method for cloud detection in multispectral satellite imagery, IEEE Xplore, pp. 3827-3829, doi: 10.1109/IGARSS52108.2023.10282395.

46.        C. V. S. S. Manohar Kumar, M. S. Salini and R. R. Nidamanuri (2023). Abundance of plastic-litter in hyperspectral imagery using spectral unmixing in coastal environment, IEEE Xplore, pp. 6029-6032, doi: 10.1109/IGARSS52108.2023.10282684.

47.        A. S. Sarma and R. R. Nidamanuri (2023). Active learning-enhanced plant-level crop mapping with drone hyperspectral imaging and evolutionary computing, IEEE Xplore, pp. 1-5, doi: 10.1109/WHISPERS61460.2023.10430799.

48.        Sivaganesh, C. H, M. K. C. V. S. S., M. Kaushik, R. G. Sharathchandra and R. Rao Nidamanuri (2023). Hyperspectral detection of fusarium wilt in tomato plants using machine learning-based approaches, IEEE Xplore, pp. 7583-7585, doi: 10.1109/IGARSS52108.2023.10282890.

49.        Indu. K C, Manohar Kumar, C. V. S. S, Dhanya. S. Pankaj and R. R. Nidamanuri (2023). Automatic object-based plant-level crop segmentation in drone-based hyperspectral Imagery, IEEE Xplore,  pp. 1-3, doi: 10.1109/WHISPERS61460.2023.10431051.

50.        Nijitha. P, Manohar Kumar, C. V. S. S, Dhanya. S. Pankaj and R. R. Nidamanuri (2023). Solid waste detection and waste-material characterization in urban environment at subpixel level in airborne hyperspectral imagery, IEEE Xplore, pp. 1-3, doi: 10.1109/WHISPERS61460.2023.10430865.

51.        Aarsha. B. R, Manohar Kuamr, C. V. S. S, Dhanya. S. Pankaj and R. R. Nidamanuri (2023). Invasive plant species detection in airborne hyperspectral imagery over complex forest landscape, IEEE Xplore, pp. 1-3, doi: 10.1109/WHISPERS61460.2023.10431181.

52.        A. S. Sarma and R. Rao Nidamanuri (2023). Evolutionary optimisation techniques for band selection in drone-based hyperspectral images for vegetable crops mapping, IEEE Xplore, pp. 7384-7387, doi: 10.1109/IGARSS52108.2023.10282887.

53.        Manohar Kumar, C. V. S. S., R. R. Nidamanuri and V. K. Dadhwal (2023). Sub-pixel discrimination of soil and crop in drone-based hyperspectral imagery, IEEE Xplore, pp. 1-4, doi: 10.1109/WHISPERS61460.2023.10430777.

54.        Bisht, D.S., Rao, T.N., Nidamanuri, R.R., Chandrakanth, S.V. and Sharma, A. (2022). Prediction of integrated water vapor using a machine learning technique, IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5.

55.        Jha, S.S., Joshi, C. and Nidamanuri R.R. (2022). Target detection in hyperspectral imagery using atmospheric-spectral modelling and deep learning, IEEE Geoscience and Remote Sensing Letters, 19, 1-5.

56.        Nidamanuri, R.R., Reji, J, Ramiya, Astor, T., Wachendorf, M. and Buerkert, A. (2022). High-resolution multispectral imagery and LiDAR point cloud fusion for the discrimination and biophysical characterization of vegetable crops at different levels of nitrogen, Biosystems Engineering, 222, 177- 195.

57.        Dubacharla, G. and Nidamanuri, R.R. (2022). A real-time SC2S based open-set recognition in remote sensing imagery, Journal of Real-Time Image Processing, 19, 867 - 880.

58.        Dubacharla, G. and Nidamanuri, R.R. (2022). A real-time SC2S based open-set recognition in remote sensing imagery, Journal of Real-Time Image Processing, 19, 867 - 880.

59.        C.V.S.S. Manohar Kumar, Jha, S.S., Nidamanuri, R.R. and Dadhwal, V.K. (2022), Multi-resolution terrestrial hyperspectral dataset for spectral unmixing problems, Data in Brief, 43,108331

60.        Manohar, C.V.S.S., Jha, S.S., Nidamanuri R.R. and Dadhwal, V.K. (2022). Benchmark studies on pixel - level spectral unmixing of multi-resolution hyperspectral imagery, International Journal of Remote Sensing, 43, 1451 - 1484.

61.        Jha, S.S., Nidamanuri R.R., and Intellucci, E.J. (2022). Influence of atmospheric modeling on spectral target detection through forward modeling approach in multi-platform remote sensing data, ISPRS Journal of Photogrammetry and Remote Sensing, 183, 286 - 306.

62.        Vijaywargiya, J., Nidamanuri, R.R. (2022). Forest fire damage and recovery assessment of Bandipur forest, India. In: Mathur, G., Bundele, M., Lalwani, M., Paprzycki, M. (eds) Proceedings of 2nd International Conference on Artificial Intelligence: Advances and Applications. Algorithms for Intelligent Systems. Springer, Singapore.

63.        Reji, J, Nidamanuri, R.R., Ramiya (2021). Object-level classification of vegetable crops in 3D LiDAR point cloud using deep learning convolutional neural networks, Precision Agriculture, 22, 1617 - 1633.

64.        Reji, J, Nidamanuri, R.R., Ramiya, Astor, T., Wachendorf, M. and Buerkert, A. (2021). Multi-temporal estimation of vegetable crop biophysical parameters with varied nitrogen fertilization using terrestrial laser scanning, Computers and Electronics in Agriculture, 184, 106051.

65.        Indirabai, I., Nidamanuri, R.R., Nair, M. & Nair, J. (2021). Biophysical Characterization of Forests in Western Ghats of India by Integration of Space-Borne LiDAR and Multispectral Remote Sensing, Remote Sensing in Earth Systems Sciences. 1-16. 10.1007/s41976-021-00050-5.

66.        Nair, S., Pillutla, R.C. and Nidamanuri, R.R. (2021). Semi-Empirical Model for Upscaling Leaf Spectra (SEMULS): A novel approach for modeling canopy spectra from in situ leaf reflectance spectra, Geocarto International, 36, 1665 - 1684.

67.        Nautiyal, S., Goswami, M., Nidamanuri, R.R. (2020). Structure and composition of field margin vegetation in the rural-urban interface of Bengaluru, India: a case study on an unexplored dimension of agroecosystems. Environ Monit Assess 192, 520. https://doi.org/10.1007/s10661-020-08428-6

68.        Jha, S.S. and Nidamanuri R.R. (2020). Gudalur Spectral Target Detection (GST-D): A new benchmark dataset and engineered material target detection in multi-platform remote sensing data, Remote Sensing, 12(13), 2145. https://doi.org/10.3390/rs12132145

69.        Nidamanuri, R. R. (2020). Hyperspectral discrimination of tea plant varieties using machine learning and spectral matching methods, Remote Sensing Applications: Society and Environment, 19, pp.100350 https://doi.org/10.1016/j.rsase.2020.10035

70.        6Dubacharla, G. and Nidamanuri, R.R. (2020). A novel supervised cascaded classifier system (SC2S) for robust remote sensing image classification, IEEE Geoscience and Remote Sensing Letters, 18, 421 - 425.

71.        Jha S.S., Nidamanuri R.R. (2020). Dynamics of target detection using drone based hyperspectral imagery. In: Jain K., Khoshelham K., Zhu X., Tiwari A. (Eds). Lecture Notes in Civil Engineering, Vol 51. Springer, https://doi.org/10.1007/978-3-030-37393-1_10

72.        Indirabai, I., Nair, M.V.H, Nair, J.R. and Nidamanuri, R.R. (2020). Direct estimation of leaf area index of tropical forests using LiDAR point cloud, Remote Sensing Applications: Society and Environment, 18, 100295 https://doi.org/10.1016/j.rsase.2020.100295.

73.        Dubacharla, G. and Nidamanuri, R.R. (2020). A real-time FPGA accelerated stream processing for hyperspectral image classification, Geocarto International, https://doi.org/10.1080/10106049.2020.1713231

74.        Athira, K., Sooraj, N.P., Jaishanker, R., Saroj Kumar, V., Sajeev, C.R., Pillai, M.S., Govind, A., Ramarao, N., Dadhwal, V.K. (2019). Chromatic exclusivity hypothesis and the physical basis of floral color, Ecological Informatics, 49: 40 – 44.

75.        Indirabai, I., Nair, M.V.H, Nair, J.R. and Nidamanuri, R.R. (2019).  Terrestrial laser scanner based 3d reconstruction of trees and retrieval of leaf area index in a forest environment, Ecological Informatics, 53, 100986.

76.        Indirabai, I., Nair, M.V.H, Nair, J.R. and Nidamanuri, R.R. (2019).  Estimation of forest structural attributes using ICESat/GLAS-spaceborne laser altimetry data in the Western Ghats Region of India, Journal of Geovisualization and Spatial Analysis (2019) 3:10, https://doi.org /10.1007/s41651-019-0033-2

77.        Rajeswari B., Srivalsan N., Nidamanuri R.R., and Gorthi RKSS (2018), Active learning-based optimized training library generation for object-oriented image classification, IEEE Transactions on Geoscience and Remote Sensing, 56, 575 - 585.

78.        Ramiya A.M., Nidamanuri, R.R. and Krishnan, R. (2019), Assessment of various parameters on 3D semantic object-based point cloud labelling on urban LiDAR dataset, Geocarto International, 34, 817-838.

79.        Thomas Moeckel, Supriya Dayananda, Rama Rao Nidamanuri, Sunil Nautiyal, Nagaraju Hanumaiah , Andreas Buerkert, and Michael Wachendorf (2018). Estimation of Vegetable Crop Parameter by Multi-temporal UAV-Borne Images, Remote Sens. 2018, 10, 805.

80.        Rajeswari B., Srivalsan N., Nidamanuri R.R., and Gorthi RKSS (2018), Batch-mode active learning-based superpixel library generation for very high-resolution aerial image classification. In: Verma, N.K. and Ghosh, A.K. (Eds), Computational Intelligence: Theories, Applications and Future Directions - Volume II (Advances in Intelligent Systems and Computing book series (AISC, volume 799), 307-318. https://doi.org/10.1007/978-981-13-1135-2_24

81.        Madalasa, P. Gorthi R.K.S.S, Martha,T.R., Nidamanuri, R.R. and Mishra, D. (2018). Bayesian approach for landslide identification from high-resolution satellite images. In: Chaudhuri, B.B., Kankanhalli, M.S. & Raman, B (Eds), Advances in Intelligent Systems and Computing 704, https://doi.org/10.1007/978-981-10-7898-9_2

82.        Rajeswari B., Gorthi RKSS and Nidamanuri R.R. (2018). Learning-based fuzzy fusion of multiple classifiers for object-oriented classification of high-resolution images. In: Chaudhuri, B.B., Kankanhalli, M.S. and Raman, B (Eds) Advances in Intelligent Systems and Computing book series (AISC, volume 703), 63 – 78. https://doi.org/10.1007/978-981-10-7895-8

83.        Jha S.S., Manohar, C.V.S.S. and Nidamanuri, R.R. (2019). Flexible atmospheric compensation technique (FACT): a 6S based atmospheric correction scheme for remote sensing data, Geocarto International, https://doi.org/10.1080/10106049.2019.1588391

84.        Ramiya A.M., Nidamanuri, R.R. and Krishnan, R. (2019) "Individual tree detection from airborne laser scanning data based on supervoxels and local convexity". Remote Sensing Applications: Society and Environment, 15, 100242

85.        Supriya Dayananda, Thomas Astor, Jayan Wijesingha, Subbarayappa Chickadibburahalli Thimappa, Hanumanthappa Dimba Chowdappa, Mudalagiriyappa, Rama Rao Nidamanuri, Sunil Nautiyal and Michael Wachendorf (2019). Multi-temporal monsoon crop biomass estimation using hyperspectral imaging, Remote Sensing, 11(15), 1771.

86.        Ramiya A.M., Nidamanuri, R.R. and Krishnan, R. (2016). Super-voxels based spatial-spectral approach for 3D object based urban point cloud labelling, International Journal of Remote Sensing, 37, 1- 16.

87.        Ramiya A.M., Nidamanuri, R.R. and Krishnan, R. (2017). Segmentation based building detection approach from LiDAR point cloud, The Egyptian Journal of Remote Sensing and Space Science, 20, 71 – 77.

88.        Nidamanuri, R.R. (2016). Multiple spectral similarity metrics for surface materials identification using hyperspectral data, Geocarto International, 31, 845 – 859.

89.        Dhanya S Pankaj and Nidamanuri R.R. (2016). A robust estimation technique for 3D point cloud registration, Image Analysis and Stereology 35, 15- 28.

90.        Ramiya A.M., Nidamanuri, R.R. and Krishnan, R. (2016). Object-oriented semantic labelling of spectral–spatial LiDAR point cloud for urban land cover classification and buildings detection, Geocarto International, 31, 121 – 139.

91.        Kadapala B.R., Ahamed, J. Hebbar, R. Raj, U. and Nidamanuri R.R. (2016). Object based classification techniques for citrus orchards, Journal of Geomatics, 10, 65 – 70

92.        Christian, A., Joshi, N., Saini, M., Mehta, N.K, Goroshi, S., Nidamanuri R.R., Thenkabail, P., Desai, A.R., Nadiminti, K. (2015). Seasonal variations in GPP of a tropical deciduous forest from MODIS and Hyperion, Agricultural and Forest Meteorology, 214-215, 91-105.

93.        Damodaran, B.B., and Nidamanuri R.R., and Tarabalka, Y. (2015). Dynamic ensemble selection approach for hyperspectral image classification with joint spectral and spatial information, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 2405 – 2417.

94.        Venkatesh. S.S, Anil Kumar. A.K, Deepak Mishra, Nidamanuri R.R and Karthikesan. D (2015). Three-dimensional motion parameter estimation from consecutive perspective views of rigid planar patch: algorithm based on pure parameters and singular value decomposition and implementation, International Journal of Applied Engineering Research, 10(8), 6122 – 6128.

95.        Nidamanuri R.R and Damodaran, B.B. (2014): Dynamic linear classifier system for hyperspectral image classification for land cover mapping, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2080 – 2093.

96.        Damodaran, B.B., and Nidamanuri R.R (2014): Assessment of the impact of dimensionality reduction methods on information classes and classifiers for hyperspectral image classification by multiple classifier system. Advances in Space Research, 53, 1720–1734.

97.        Ramiya, A. M., Nidamanuri R.R., and Krishnan, R. (2014). Semantic labelling of urban point cloud data, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-8, 907-911, doi:10.5194/isprsarchives-XL-8-907-2014.

98.        Nidamanuri R.R and Ramiya, A.M. (2014), Spectral identification of materials by reflectance library search, Geocarto International, 29, 609-624.

99.        Sennaraj V., Nidamanuri R.R and Bremananth, R. (2012): Spectral material mapping using hyperspectral imagery: a review of spectral matching and library search methods, Geocarto International, 28, 171 –

100.     Nidamanuri R.R. and Zbell, B. (2013), Understanding the unique spectral signature of winter rape, Journal of the Indian Society of Remote Sensing, 41, 57 – 70.

101.     Nautiyal, S. and Nidamanuri R.R (2012), Ecological and socioeconomic impacts of conservation policies in biodiversity hotspots: a case study from Rajiv Gandhi National Park, India, Journal of Environmental Studies and Sciences, 2, 165 – 177.

102.     Nautiyal, S. and Nidamanuri R.R. (2012). Protected area management in biodiversity hotsopts: a case study from Nagarahole National Park, India in Land Management in Marginal Mountain Regions: Adaptation and Vulnerability to Global Change, Saxena, et al (Eds), Published by United Nations University, Japan.

103.     Nidamanuri R.R and Zbell, B. (2011). Existence of characteristic spectral signatures for agricultural crops – potential for automated crop mapping by hyperspectral imaging, Geocarto International, 26, 524 - 533.

104.     Nidamanuri R.R and Zbell, B. (2011). A spectral matching quality indicator for material mapping using spectral library search methods, International Journal of Remote Sensing, 32, 7151 - 7162.

105.     Nidamanuri R.R. and Zbell, B. (2011). Transferring spectral libraries of canopy reflectances for crop classification using hyperspectral remote sensing data, Biosystems Engineering, 110, 231-246.

106.     Nidamanuri R.R and Zbell, B. (2011). Use of field reflectance data for crop mapping using airborne hyperspectral image, ISPRS Journal of Photogrammetry and Remote Sensing, 66, 683 - 691.

107.     Nidamanuri R.R and Zbell, B. (2011). Normalized Spectral Similarity Score (NS3) as an efficient spectral library searching method for hyperspectral image classification, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4, 226 - 240.

108.     Nautiyal, S. and Nidamanuri R.R. (2010). Conserving biodiversity in protected area of biodiversity hotspot in India: a case study, International Journal of Ecology and Environmental Sciences, 36, 195 - 200.

109.     Nidamanuri R.R. and Zbell, B. (2010).  A method for selecting optimal spectral resolution and comparison metric for material mapping by spectral library search, Progress in Physical Geography, 34, 47 - 58.

110.     Rao, N.R., Garg, P.K, and Ghosh, S.K. (2006). Estimation and comparison of leaf area index of agricultural crops using IRS LISS-III and EO-1 Hyperion images, Journal of the Indian Society of Remote Sensing, 34, 69-78.

111.     Rao, N.R., Garg, P.K, and Ghosh, S.K. (2006). Evaluation of radiometric resolution on the estimation of leaf area index of agricultural crops, GIScience & Remote Sensing. 43, 1-11.

112.     Rao, N.R., Garg, P.K, and Ghosh, S.K. (2007). Evaluation of radiometric resolution on land use/land cover mapping in an agricultural area, International Journal of Remote Sensing, 28, 443-450.

113.     Rao, N.R., Garg, P.K, and Ghosh, S.K. (2007). Estimation of plant chlorophyll and nitrogen concentration of agricultural crops using EO-1 Hyperion hyperspectral imagery, Journal of Agricultural Science, 146, 1-11.

114.     Rao, N.R., Ghosh, S.K. and Garg P.K. (2007). Development of cultivar based crop spectral library and classification of crop cultivars using hyperspectral data, Precision Agriculture, 8, 173-185.

115.     Rao, N.R., Sharma, N., Kapoor, M. and Venkateswarlu, K. (2007). Yield prediction and waterlogging assessment for tea plantation land using satellite image based techniques. International Journal of Remote Sensing, 28, 1561 - 1576.

116.     Rao, N.R. and Saravanan, S. (2007). Remote sensing-based estimation of agricultural crops damage due to Asian tsunami-A case study in part of Nagapattinam, India, International Journal of Applied Remote Sensing, 2, 51 - 632.

117.     Rao, N.R., Garg, P.K, and Ghosh, S.K. (2007). Remote sensing based estimation of cotton canopy cover using linear mixture modelling approach, International Journal of Applied Remote Sensing, 1, 63- 71.

118.     Rao, N.R., Garg, P.K, and Ghosh, S.K. (2007). Potential use of hyperspectral imagery to eliminate saturation effect of NDVI at high canopy density of vegetation, International Journal of Applied Remote Sensing, 1, 10- 21.

119.     Rao, N.R. (2009). Conformity analysis of cotton crop using remote sensing and GIS, Geospatial World Magazine (09/01/2009).

 


 

Academic conferences/symposia


Recent

 

1.   K. V. Greeshma, A. S. Sarma and R. R. Nidamanuri (2024). Forward Spectral Mixture Modelling for Mineral Mapping Applications, IEEE Xplore, 10.1109/InGARSS61818.2024.10984204

2. J. K. Thomas, D. S. Pankaj, H. Chandra and R. R. Nidamanuri (2024). Classification of Crops at Different Nitrogen Levels Using Drone-Based Hyperspectral Imaging: A Machine Learning Approach, IEEE Xplore, 0.1109/InGARSS61818.2024.10984076.

3. A. Gujrati, S. Chander, R. R. Nidamanuri, R. P. Singh and P. K. Gupta (2024). Towards operational retrieval of chlorophyll-a in inland waters using optical water types, IEEE Xplore,  10.1109/InGARSS61818.2024.10984300.



         Past 

1.         Kumar, Abhijeet; T. N., Rao; Nidamanuri, R. R, ‘Retrieval of microphysical parameters of precipitation using X-band dual-polarization radar (DROP-X)’, ‘IEEE – GRSS Young Research Conclave, Thiruvananthapuram, India (18/12/2020 – 20/12/2020).

2.         Kumar, Abhijeet; T. N., Rao; Nidamanuri, R. R, ‘Microphysical Processes in Embedded Convective Cells in Land falling Tropical Cyclone NIVAR using X-band dual polarization radar’, 11th European Radar in meteorology and Hydrology Conference (ERAD-2022), Locarno, Switzerland. (29/08/2022 – 02/09/2022)

3.         Kumar, Abhijeet; T. N., Rao; Nidamanuri, R. R, ‘Raindrop size distribution characteristics of the Inner core, Inner rain band, and Outer rain band of Tropical Cyclone over a Tropical station - Gadanki’, European Meteorological Satellite Conference (EUMETSAT), Malmo, Sweden, 2023. (11/09/2023 – 15/09/2023).

4.         Kumar, Abhijeet; T. N., Rao; Nidamanuri, R. R, ‘Microphysical characteristics of extreme rainfall over tropical station as revealed by X-band dual-polarization radar’, India Radar Meteorology (i-RAD) Conference, Indore, India. (10/01/2024 – 12/01/2024).

5.         Kumar, Abhijeet; T. N., Rao; Nidamanuri, R. R, ‘Unravelling the microphysical characteristics of extreme rainfall over tropical stations using X-band dual-polarization radar observation’, 12th European Radar in Meteorology and Hydrology Conference (ERAD-2024), Rome, Italy, (09/09/2024 – 13/09/2024) (online).

6.         Pooja, K., Nidamanuri, R.R., and Mishra, D. (2019). Multi-scale dilated residual convolutional neural network for hyperspectral image classification. 10th Workshop on Hyperspectral Imaging and Signal Processing, (WHISPERS), 1-5.

7.         Joseph, J., Mishra, D., Martha, T.R. and Nidamanuri, R.R. (2018). A deep learning framework for automatic landslide inventory mapping (DLF-ALM), INCA38: 38th INCA International Congress- Emerging Technologies in Cartography, Hyderabad, India

8.         Ramiya, A. M., Nidamanuri, R.R. and Krishnan, R. (2014). Semantic labelling of urban LiDAR point cloud data. Proceedings of ISPRS TC VIII Mid-Term Symposium, Hyderabad.

9.         Rajeswari B., Srivalsan N., Nidamanuri R.R., and Gorthi RKSS (2017). Batch mode active learning based superpixel library generation for very high-resolution aerial image classification, International Conference on Computational Intelligence: Theories, Applications and Future Directions, Dec. 2017, IIT Kanpur, India.

10.      Rajeswari B., Srivalsan N., Nidamanuri R.R., and Gorthi RKSS (2017). Learning based fuzzy fusion of multiple classifiers for object oriented classification of high resolution images, International Conference on Computer Vision and Image Processing, Sept. 2017, IIT Roorkee, India.

11.      Veena, V.S., Mishra, D., Martha, T.R. and Nidamanuri, R.R. (2016). Automatic detection of landslides in object-based environment using open source tools, GEOBIA 2016, GEOBIA 2016: Solutions and Synergies, 14–16 September 2016, Enschede, The Netherlands.

12.      Indirabai, I. and Nidamanuri, R.R. (2016). Three dimensional urban building detection using LiDAR data using point cloud library and visual studio C++, Proceedings of the Imaging & Geospatial Technology Forum (IGTF) 2016 American Society for Photogrammetry & Remote Sensing (ASPRS) Conference and Co-Located JACIE Workshop, 11-15 April 2016, Fort Worth, USA.

13.      Pankaj, D.S and Nidamanuri, R.R. (2016). Robust multi-view registration of point clouds. International Conference on Communication Systems and Networks, (ComNet 2016), 21-23 July, 2016, Ahmedabad, India

14.      Pankaj, D.S and Nidamanuri, R.R. (2016). ProLoSAC: An Improved RANSAC algorithm for pairwise registration of 3d point clouds. Indian Conference on Computer Vision Graphics and Image Processing, Dec. 2014, Bangalore.

15.      Nidamanuri, R.R. (2014). Spectral discrimination of tea plant varieties by statistical, machine learning and spectral similarity methods, 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 24-27 June 2014, Switzerland.

16.      Dhanya S Pankaj, Nidamanuri, R.R. and P Bhanu Prasad (2013). 3-D imaging techniques and review of products, Proceedings of the “International Conference on Innovations in Computer Science and Engineering”, Hyderabad.

17.      Bhusan, D. B.and Nidamanuri, R.R. (2013). Dynamic classifier system for hyperspectral image classification, IGARSS 2013, Melbourne.

18.      Bhusan, D. B.and Nidamanuri, R.R. (2012). Assessment of relationship between information classes, classifiers and dimensionality reduction methods for hyperspectral image classification by multiple classifier system, National Symposium on ‘Space Technology for Food & Environmental Security’ &Annual Convention of Indian Society of Remote Sensing, Dec. 5 -7, 2012, New Delhi.

19.      Vishnu S., Nidamanuri , R.R. and Bremananth, R. (2012). Normalized spectral matching score (NSMS): an improved method for hyperspectral image classification, National Symposium on ‘Space Technology for Food & Environmental Security & Annual Convention of Indian Society of Remote Sensing’, Dec. 5 -7, 2012, New Delhi.

20.      Bhusan, D. B.and Nidamanuri, R.R. (2012). Impact of feature reduction methods on target detection methods for hyperspectral image classification by multiple classifier system, presented in “39th COSPAR Scientific Assembly”, 14 – 22 July, 2012, Mysore.

21.      Nidamanuri, R.R. and Saquib, Q. (2011). Integration of LIDAR and hyperspectral data for object based image classification, presented in "National Symposium on ‘Empowering Rural India through Space Technology" organized Indian Society of Remote Sensing, November 8 -11, 2011, Bhopal.

22.      Nidamanuri, R.R. and Ramiya, A.M. (2011). Estimation of tropical forest biophysical parameters using near UV and NIR reflectance from GOSAT TANSO – CAI sensor, presented in "International Conference on "Adaptive Management of Ecosystems: The Knowledge Systems of Societies for Adaptation and Mitigation of Impacts of Climate Change" 19-21, October 2011, Bangalore.

23.      Nidamanuri, R.R. and Zbell B. (2009). On the transferability of vegetation spectral library, presented in 33rd International Symposium on Remote Sensing of Environment, May 3 - 7, 2009, Stresa, Italy.

24.      Rao, N.R. and Alex, S.H, (2007). A Spectral library approach for the identification of diseased mango trees, presented at International Symposium: "Application of Precision Agriculture for Fruits and Vegetables", held during January 6-9, 2008 at Orlando, Florida, USA.

25.      Rao, N.R., Garg, P.K, and Ghosh, S.K. (2006). Development of variety based crops spectral library and discrimination of various crop species using hyperspectral remote sensing data, in proceedings of the International Conference on Geoinformatics-2006, held at Hyderabad during 2-5, June 2006.

26.      Rao, N.R., Garg, P.K, and Ghosh, S.K. (2006). Evaluation of the impact of radiometric resolution on land use/land cover classification, in Proceedings of the Indo-Australian Conference on IT in Civil Engineering, held at Indian institute of Technology, Roorkee, India during 19-21 Feb, 2006.

27.      Rao, N.R. and Ghosh, S.K., Rao, N.V. (2005). Land use/land cover classification with multispectral and hyperspectral EO-1 data: A comparison, presented in 31st International Symposium on Remote Sensing of Environment, held on June 20 - 24, 2005, St. Petersburg, Russia.

28.      Rao, N.R. and Venkateswarlu, K. (2005). Remote sensing-based estimation of agricultural crops damage due to Asian Tsunami, presented in National Seminar on GIS Applications in Rural Development with Focus on Disaster Management, held on 9-10, Mar 2005, National Institute of Rural Development, Hyderabad, India.

29.      Rao, N.R., Garg, P.K, and Ghosh, S.K. (2004). Estimation of leaf area index of agricultural crops using remote sensing data, presented in International Conference on Geoinformatics-2004, held on December 12-14, 2004, University of Mysore, Mysore, India.

30.      Rao, N.R., Garg P.K., and Jagadish M.V. (2003). Conformity analysis of cotton crop using remote sensing and GIS techniques, presented in 30th International Symposium on Remote Sensing of Environment, November 10 - 14, 2003, Honolulu, Hawaii, U.S.A.

 

 

 

 

RESEARCH PROJECTS

  On going projects

1. HSI Sensor: Hyperspectral imaging system development for precision remote sensing applications

Funding agency: Department of Science and Technology, Government of India

Duration: July 2023 - July 2026.

Funding amount: 35.84 Lakh.

Co-PIs: Dr Dinesh Naik, Associate Professor, IIST, Dr Usha Rani Nelakuditi, Professor & Dean, Vignan University, Guntur.

2. Establishment: Regional Center for Geodesy  at IIST (part of the National Center for Geodesy IIT Kanpur)

    Funding agency: Department of Science and Technolgoy, Government of India

     Duration: Jan 2023 - Jan. 2028

     Funding amount: Rs. 140.9 lakh

3.. DeepCloud: Deep learning based system for time series cloud detection using multi-sensor satellite Imagery

 

Funding agency: DOS - NRSC under the Advacned Apace Research Group (ASRG) initiative

                Funding amount: Rs. 39 lakh

               Duration: Jan 2022 – Mar. 2025

          Co-PI: Ms Sai Kalpana, Scientist/Engineer SF, NRSC-Hyderabad

4.. Structural and functional characterization of cropping systems using hyperspectral and 3D laser scanning data and big daIta analytics

               (Indo-German consortium research project; Phase-2)

                Funding agency: Department of Biotechnology, Govt. of India

                Funding amount: Rs. 83.15 lakh

               Duration: April 2021 – Mar. 2024

 

Completed  (2015 onwards)

 1Indo-German consortium research project "the rural-urban interface of bangalore: a space of transitions in agriculture, economics, and society"

Taking forward the goal of the MOU signed in October 2012 between The Deutsche Forschungsgemeinschaft (DFG), Germany and the Department

of Biotechnology of India (DBT), Government of India for Scientific Cooperation, the following institutions have joined together to perform the theme

specific scientific research, knowledge sharing and technical cooperation.

   Indian institutions

The University of Agricultural Sciences, Bengaluru (coordinating institution)

National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru

Indian Institute of Space Science and Technology (IIST), Thiruvanthapuram

Institute for Social and Economic Change (ISEC), Bengaluru

Institute of Wood Science and Technology (IWST), Bengaluru

Ashoka Trust for Research in Ecology and Environment (ATREE Bengaluru and

AjimPremji University (APU), Bengaluru 


German institutions

University of Göttingen

University of Kassel

 As part of the scientific goals of these consortia, IIST and ISEC-Bengaluru have got funding for a joint research project

Integrating air and space borne spectroscopy and laser scanning to assess structural and functional characteristics of crops and field margin vegetation.

 Funding agency: Department of Biotechnology, Govt. of India

Funding amount: Rs. 200 lakh

Duration: Nov. 2016 – Sept. 2020

PI: Dr Rama Rao Nidamanuri

Co-PIs:

Prof. Sunil Nautiyal, (ISEC – Bengaluru)

Ms. Ramiya A M (IIST)

  2. Development of a stand-alone atmospheric correction module for hyperspectral data

 This project is part of the DST’s national initiative on hyperspectral remote sensing, creating for infrastructure (equipment) and research grants to academic institutions in India.  As part of this, IIST has taken up the responsibility of developing advanced algorithms based modules for atmospheric correction of hyperspectral data. Various scientific simulations, validations and extended remote sensing applications would be undertaken in this regard.

 

Funding agency:  Department of Science and Technology (DST), Government of India

 

Budget: Rs. 142.49 lakh


 Duration: April 2016 - March 2021


 PI: Dr Rama Rao Nidamanuri

 

  3. Spectral biochemical analysis of forest species using hyperspectral remote sensing – a case study from Eastern Ghats forest ecosystems

 Leaf chlorophyll and nitrogen are the basic indicators of vegetation health condition and are manifestations of the biogeochemical processes which provide

information on whether an ecosystem sustains or not. The specific objectives of this research are:  1. estimation of canopy level chlorophyll and nitrogen content

of various species using integrated field and satellite based methods, and  2.  correlating spectral variations with that of canopy biochemical patterns under stress conditions.

                 Funding agency:  Department of Science and Technology (DST), Government of India

 Budget: Rs. 39.5 lakh  

Duration: three years (April 2016 - March 2019)

 PIs: Dr. Ramachandra Prasad, IIIT-Hyderabad, Dr Rama Rao Nidamanuri (IIST).


 4Above ground volume/biomass estimation and validation using airborne S- and L-band NISAR data and radiative transfer modeling

          Funding agency: SAC-Ahmedabad

          Budget: Rs. 19 lakh

          Role: co-PI      PI: Dr. Smitha Ashok, All Saints College, Trivandrum.

          Duration: Nov. 217 - Nov. 2020

5. City GML based 3D models for smart cities in India using LiDAR point cloud

                 Funding agency: Department of Science and Technology (DST), Government of India

                   Budget: Rs. 33 lakh

                   Role: co-PI

                  PI: Dr Ramiya A M

 

             Duration:  two years (Oct. 2020 - Sept. 2022)

Doctoral Research Mentor

 

1.       Mr. Bharath Bhushan, 2014: Multiple classifier system for hyperspectral image classification

2.       Ms. Dhanya S Pankaj, 2016: Improved algorithms for automatic registration of 3D point clouds

3.       Ms. Ramiya A.M., 2016 (jointly with Dr R Krishnan, former Dean R&D, IIST): 3D Semantic labelling of urban LiDAR point cloud and multispectral data 

4.       Ms. Indu I (jointly with Prof. Jai Shanker, IIITM-K), 2019. Estimation of biophysical parameters of tropical forest using optical and LiDAR remote sensing techniques: a case study from Western Ghats of India

5.        Ms. Salghuna, N.N., 2019 (Jointly with Dr R.C. Prasad, IIIT Hyderabad): Approaches for spectral characterization of tree species of Araku forest, Eastern Ghats, using CHRIS-PROBA imagery and canopy   upscaling models by assimilating leaf biophysical-chemical parameters

6.        Mr. Dubacharla Gyaneshwar, 2021: Robust image classification algorithms for multispectral and hyperspectral data in real-time environments

7.       Mr. Sudhanshu Shekhar Jha (2021): Multi-platform hyperspectral target detection and modelling in dynamic atmospheric conditions

8.     Ms. Reji, J. (2021). 3D LiDAR point cloud processing using statistical and machine learning methods for precision agriculture

9.       Mr. Manohar Kumar (2023): Benchmark studies on spectral unmixing of multi-sensor hyperspectral imagery

10.   Mr. Suraj Reddy (2024): (jointly with Dr V K Dadhwal former Director, IIST and Dr C S Jha NRSC Hyderabad): Studies on multi-source remote sensing data integration for modelling and estimation of forest biomass

11.   Mr. Abhijeeth Kumar (2025) (jointly with Dr T Narayana Rao, NARL, Tirupati): A study on structure, dynamics and microphysics of precipitation using X-band dual-polarization radar                            

12.   Mr. Deepak Singh Bisht (2025) (jointly with Dr T Narayana Rao, NARL, Tirupati): Studies on dynamics of integrated water vapor (IWV) and precipitation measurements from a GNSS receiver network     

 13.   Ms. Harsha Chandra (2025): Transferable methods for within-field/patch-level crop identification using drone-based hyperspectral imagery

 

14.   Ms. Anagha S Sarma (2025): Evolutionary computing and knowledge transfer approaches for hyperspectral image analysis in precision agriculture

15.  Mr Vamsi Krishna (2025) (jointly with Prof. Usha Rani, Vignan University): Development and assessment of knowledge transfer-based approaches for hyperspectral image classification for land use / land cover mapping

 

Ongoing: 

1.   Mr. Jayasimha  (jointly with Dr P Murugan, URSC Bengaluru): Deep learning approaches for anomaly and target detection in hyperspectral imagery                                                                   

2.   Mr. Ashwin Gujarati  (jointly with Dr R P Singh, SAC Ahmedabad): Remote sensing of eutrophication in inland water bodies of India 

3.   Ms. Punya P: Studies on the long-term dynamics of algal blooms & climate change impacts using statistical and machine learning approach

4.   Ms. Latha Johnson  (jointly with Dr S Muralikrishnan, NRSC Hyderabad): Deep learning-based simulation and generation of high-resolution remote sensing imagery 

5.   Mr. Manoj Kaushik: Machine learning-based discrimination, mapping, and prediction of crop and soil parameters using multi-source hyperspectral imagery

6.   Mr. Ammaji Rao: Crop growth modelling, radiative transfer and machine-machine approaches for precision agriculture

 

 

 A.   A.  DST Sponsored Central Facility for Hyperspectral Remote Sensing for Southern Region

  A central lab facility with all the advanced equipment for researching on hyperspectral remote sensing/image processing

    has been set up in the Department of Earth and Space Sciences, Indian Institute of Space Science and Technology. The following instruments available.

  1. Hyperspectral spectroradiometer (400 - 2500nm)

 2. Hyperspectral imaging spectroradiometer (400 - 1000nm)

 3. Plant canopy analyser

 4. Chlorophyll concentration meter

 5. Quantum sensor

 6. Laser distance meter (Leica Disto S-910) 

 Researchers and students from Andhra Pradesh, Karnataka, Kerala, Pondicherry, Tamil Nadu, and Telangana can access the facilities. 

     Contact: Dr. Rama Rao Nidamanuri 

          email: [email protected]

 

B. Data Resources 

   As part of the research and teaching activities of the faculty, IIST has acquired/generated several remote sensing data of multispectral,

microwave and LiDAR remote sensing nature.

 Recently IIST acquired good quality terrestrial laser scanner data on trees, crops, and buildings. We will be happy to share some

of the data for students’ projects. Interested may please contact (email: [email protected]) explaining the purpose.

 Apart, we can acquire ground / lab / outdoor 3D laser point cloud and hyperspectral images for a variety of applications.

Interested researchers / students may contact with the idea of joint works / usage / collaboration.


 C. Benchmark Dataset for Target Detection Experiments

 
 Advanced remote sensing techniques have been gaining popularity for decision level strategic applications such as military security and surveillance, and law enforcement.

 Target detection in imagery is the simplest yet powerful general approach suitable for addressing surface object identification and monitoring

requirements in military, mineral recognizance, environmental monitoring and enforcement etc. Noticing the vast potential of target detection

using hyperspectral imagery and the lack of a reference dataset for researchers, we have brought out an exemplary dataset – multi-platform

(ground, airborne and space-borne) remote sensing imagery (hyperspectral) for target detection / engineered material detection studies.

 This dataset is described in our recent article “Jha S.S. and Nidamanuri R.R. (2020). Gudalur Spectral Target Detection (GST-D): A new

benchmark dataset and engineered material target detection in multi-platform remote sensing data, Remote Sensing (Accepted)”

 

We will be happy to share the datasets with those interested and assist in the appropriate processing and analyses of imagery for various other perspectives.

 Interested researchers may contact me.

 
 Thank you!

 

NIR: Networking of Independent Researchers

 

 A seamless association of researchers across the disciplines-age-position -institution is the evolving approach of research collaboration.

In the NIR, every member is aware and assured of a set of resources without out explicit costs associated with it.

 Often, the research starts with a member proposing a topic for research - can come simply out of nowhere research proposal/PhD/masters

thesis etc., no limit.

 The problem will be put for discussion and will be further guided for a team formation. The members in the team contribute to the

execution of the plans and put in skills, tools, expert suggestion, blessing supervision. The outcome will be credited based on the

level and specifics of member involvement.

 The key aspects of NIR is to (i) optimize the utility, reachability and value creation of tools/techniques/equipment available across

different institutions, and (ii) to help anyone requiring technical guidance, handholding, research mentoring irrespective of the

existence or level of a formal relationship.

 Proposing this approach, we will be pleased to interact and share our resources for research in a truly cross-discipline nature

and is independent of the level of researcher (anyone can approach with a relevant requirement/idea).

 Topics of research are plenty – urban, water resources, water quality (marine/inland), forestry, agriculture,

soils, environmental monitoring and management, air, soil, and water pollution etc.